World Library  
Flag as Inappropriate
Email this Article

Lithium tantalate

Article Id: WHEBN0002067016
Reproduction Date:

Title: Lithium tantalate  
Author: World Heritage Encyclopedia
Language: English
Subject: Lithium, Tantalate, Talbot effect, Crystals, Lithium sulfite
Collection: Crystals, Lithium Compounds, Nonlinear Optical Materials, Piezoelectric Materials, Tantalates
Publisher: World Heritage Encyclopedia

Lithium tantalate

Lithium tantalate
CAS number  YesY
RTECS number WW55470000
Molecular formula LiTaO3
Molar mass 235.887 g/mol
Density 7.46 g/cm3, solid
Melting point 1,650 °C (3,000 °F; 1,920 K)
Solubility in water ?/100 ml (25 °C)
Crystal structure Space group R3c
Related compounds
Other anions LiNbO3
Supplementary data page
Structure and
n, εr, etc.
Phase behaviour
Solid, liquid, gas
Spectral data UV, IR, NMR, MS
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY   YesY/N?)

Lithium tantalate (LiTaO3), is a crystalline solid which possesses unique optical, piezoelectric and pyroelectric properties which make it valuable for nonlinear optics, passive infrared sensors such as motion detectors, terahertz generation and detection, surface acoustic wave applications, cell phones and possibly pyroelectric nuclear fusion. Considerable information is available from commercial sources about this crystal.


  • Pyroelectric fusion 1
  • Water and freezing 2
  • References 3
  • Further reading 4

Pyroelectric fusion

According to an April 2005 Nature article, Brian Naranjo, Jim Gimzewski and Seth Putterman at UCLA applied a large temperature difference to a lithium tantalate crystal producing a large enough charge to generate and accelerate a beam of deuterium nuclei into a deuteriated target resulting in the production of a small flux of helium-3 and neutrons through nuclear fusion without extreme heat or pressure. Their results have been replicated.[1]

It is unlikely to be useful for electricity generation since the energy required to produce the fusion reactions exceeded the energy produced by them. It is thought that the technique might be useful for small neutron generators, especially if the deuterium beam is replaced by a tritium one. Comparing this with the electrostatic containment of ionic plasma to achieve fusion in a "fusor" or other IEC, this method focuses electrical acceleration to a much smaller non-ionized deuterium target without heat.

Water and freezing

A scientific paper published in February 2010 shows a difference in the temperature and mechanism of freezing water to ice, depending on the charge applied to a surface of pyroelectric LiTaO3 crystals.[2]


  1. ^ B. Naranjo, J.K. Gimzewski and S. Putterman (2005). "Observation of nuclear fusion driven by a pyroelectric crystal".  
  2. ^ D. Ehre, E. Lavert, M. Lahav, I. Lubomirsky (2010). "Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials".  

Further reading

  • "Fusion seen in table-top experiment" Physics Web, 27 April 2005
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.