World Library  
Flag as Inappropriate
Email this Article

Loader (computing)

Article Id: WHEBN0000483773
Reproduction Date:

Title: Loader (computing)  
Author: World Heritage Encyclopedia
Language: English
Subject: Linker (computing), Library (computing), Position-independent code, Application binary interface, Prelink
Collection: Computer Libraries, Operating System Kernels
Publisher: World Heritage Encyclopedia

Loader (computing)

In computing, a loader is the part of an operating system that is responsible for loading programs and libraries. It is one of the essential stages in the process of starting a program, as it places programs into memory and prepares them for execution. Loading a program involves reading the contents of the executable file containing the program instructions into memory, and then carrying out other required preparatory tasks to prepare the executable for running. Once loading is complete, the operating system starts the program by passing control to the loaded program code.

All operating systems that support program loading have loaders, apart from highly specialized computer systems that only have a fixed set of specialized programs. Embedded systems typically do not have loaders, and instead the code executes directly from ROM. In order to load the operating system itself, as part of booting, a specialized boot loader is used. In many operating systems the loader is permanently resident in memory, although some operating systems that support virtual memory may allow the loader to be located in a region of memory that is pageable.

In the case of operating systems that support virtual memory, the loader may not actually copy the contents of executable files into memory, but rather may simply declare to the virtual memory subsystem that there is a mapping between a region of memory allocated to contain the running program's code and the contents of the associated executable file. (See memory-mapped file.) The virtual memory subsystem is then made aware that pages with that region of memory need to be filled on demand if and when program execution actually hits those areas of unfilled memory. This may mean parts of a program's code are not actually copied into memory until they are actually used, and unused code may never be loaded into memory at all.


  • Responsibilities 1
  • Relocating loaders 2
  • Dynamic linkers 3
  • See also 4
  • References 5


In Unix, the loader is the handler for the system call execve().[1] The Unix loader's tasks include:

  1. validation (permissions, memory requirements etc.);
  2. copying the program image from the disk into main memory;
  3. copying the command-line arguments on the stack;
  4. initializing registers (e.g., the stack pointer);
  5. jumping to the program entry point (_start).

Relocating loaders

Some operating systems need relocating loaders, which adjust addresses (pointers) in the executable to compensate for variations in the address at which loading starts. The operating systems that need relocating loaders are those in which a program is not always loaded into the same location in the address space and in which pointers are absolute addresses rather than offsets from the program's base address. Some well-known examples are IBM's OS/360 for their System/360 mainframes, and its descendants, including z/OS for the z/Architecture mainframes. In OS/360 and descendant systems, the (privileged) operating system facility is called IEWFETCH,[2] and is an internal component of the OS Supervisor, whereas the (non-privileged) LOADER application can perform many of the same functions, plus those of the Linkage Editor, and is entirely external to the OS Supervisor (although it certainly uses many Supervisor services).

IEWFETCH utilizes highly specialized channel programs, and it is theoretically possible to load and to relocate an entire executable within one revolution of the DASD media (about 16.6 ms maximum, 8.3 ms average, on "legacy" 3,600 rpm drives). For load modules which exceed a track in size, it is also possible to load and to relocate the entire module without losing a revolution of the media.

IEWFETCH also incorporates facilities for so-called overlay structures, and which facilitates running potentially very large executables in a minimum memory model (as small as 44 KB on some versions of the OS, but 88 KB and 128 KB are more common).

The OS's nucleus (the always resident portion of the Supervisor) itself is formatted in a way that is compatible with a stripped-down version of IEWFETCH. Unlike normal executables, the OS's nucleus is "scatter loaded": parts of the nucleus are loaded into different portions of memory; in particular, certain system tables are required to reside below the initial 64 KB, while other tables and code may reside elsewhere.

The system's Linkage Editor application is named IEWL.[3] IEWL's main function is to associate load modules (executable programs) and object modules (the output from, say, assemblers and compilers), including "automatic calls" to libraries (high-level language "built-in functions"), into a format which may be most efficiently loaded by IEWFETCH. There are a large number of editing options, but for a conventional application only a few of these are commonly employed.

The load module format includes an initial "text record", followed immediately by the "relocation and/or control record" for that text record, followed by more instances of text record and relocation and/or control record pairs, until the end of the module.

The text records are usually very large; the relocation and/or control records are small as IEWFETCH's three relocation and/or control record buffers are fixed at 260 bytes (smaller relocation and/or control records are certainly possible, but 260 bytes is the maximum possible, and IEWL ensures that this limitation is complied with, by inserting additional relocation records, as required, before the next text record, if necessary; in this special case, the sequence of records may be: ..., text record, relocation record, ..., control record, text record, ...).

A special byte within the relocation and/or control record buffer is used as a "disabled bit spin" communication area, and is initialized to a unique value. The Read CCW for that relocation and/or control record has the Program Controlled Interrupt bit set. The processor is thereby notified when that CCW has been accessed by the channel via a special IOS exit. At this point the processor enters the "disabled bit spin" loop (sometimes called "the shortest loop in the world"). Once that byte has been changed from its initialized value, the processor instantaneously knows reading of the relocation and/or control record has been completed, the bit spin is terminated, and relocation may proceed in real-time, and synchronously with the rotation of the media (relocation occurs during the "gap" within the media between the relocation and/or control record and the next text record). If so, after relocation of that text record is completed, the NOP CCW will be changed to a TIC, and loading and relocating will proceed using the next buffer. If not, then the channel will encounter the NOP CCW, and the channel program will terminate, until it is restarted by IEWFETCH via another special IOS exit. The three buffers are in a continuous circular queue, each pointing to its next, and the last pointing to the first, and three buffers are constantly reused as loading and relocating proceeds.

IEWFETCH can, thereby, load and relocate a load module of any practical size, and in the minimum possible time.

Dynamic linkers

Dynamic linking loaders are another type of loader that load and link shared libraries (like .dll files) to already loaded running programs.

See also


  1. ^ "exec". The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition. The Open Group. Retrieved 2008-06-23. 
  2. ^ IBM Corporation (1972). IBM OS MVT Supervisor (PDF). 
  3. ^ IBM Corporation (1972). IBM OS Linkage Editor and Loader (PDF). 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.