World Library  
Flag as Inappropriate
Email this Article

Macular degeneration

Article Id: WHEBN0000895033
Reproduction Date:

Title: Macular degeneration  
Author: World Heritage Encyclopedia
Language: English
Subject: Scotoma, Gene therapy of the human retina, Amsler grid, Vision rehabilitation, Micropsia
Collection: Disorders of Choroid and Retina, Senescence, Visual Disturbances and Blindness
Publisher: World Heritage Encyclopedia

Macular degeneration

Macular degeneration
Picture of the fundus showing intermediate age-related macular degeneration
Classification and external resources
Specialty Ophthalmology
ICD-10 H35.3
ICD-9-CM 362.50
DiseasesDB 11948
MedlinePlus 001000
eMedicine article/1223154
MeSH D008268

Macular degeneration, often age-related macular degeneration (AMD or ARMD), is a medical condition that usually affects older adults and results in a loss of vision in the center of the visual field (the macula) because of damage to the retina. It occurs in "dry" and "wet" forms. It is a major cause of blindness and visual impairment in older adults, afflicting 30-50 million people globally.[1] Macular degeneration can make it difficult or impossible to read or to recognize faces, although enough peripheral vision remains to allow other activities of daily life.

Although some macular dystrophies affecting younger individuals are sometimes rarely referred to as macular degeneration, the term generally refers to age-related macular degeneration (AMD or ARMD).

The retina is a network of visual receptors and nerves. It lies on the choroid, a network of blood vessels that supply the retina with blood.

In the dry (nonexudative) form, cellular debris called drusen accumulates between the retina and the choroid, causing atrophy and scarring to the retina. In the wet (exudative) form, which is more severe, blood vessels grow up from the choroid behind the retina which can leak exudate and fluid and also cause hemorrhaging. It can be treated with laser coagulation, and more commonly with medication that stops and sometimes reverses the growth of blood vessels.[2][3]


  • Signs and symptoms 1
  • Risk factors 2
    • Genetics 2.1
  • Pathophysiology 3
    • Dry AMD 3.1
    • Wet AMD 3.2
  • Diagnosis 4
  • Management 5
    • Dry AMD 5.1
    • Wet AMD 5.2
    • Medications 5.3
    • Vitamins 5.4
    • Adaptive devices 5.5
  • Research directions 6
  • Notable cases 7
  • See also 8
  • References 9
  • Further reading 10
  • External links 11

Signs and symptoms

Normal vision
The same view with age-related macular degeneration (National Eye Institute)

Signs and symptoms of macular degeneration include:

  • Drusen, tiny accumulations of extracellular material that build up on the retina
  • Pigmentary changes
  • Distorted vision in the form of metamorphopsia, in which a grid of straight lines appears wavy and parts of the grid may appear blank: Patients often first notice this when looking at things like miniblinds in their home or telephone poles while driving.
  • Exudative changes: hemorrhages in the eye, hard exudates, subretinal/sub-RPE/intraretinal fluid
  • Slow recovery of visual function after exposure to bright light (photostress test)
  • Atrophy: incipient and geographic
  • Visual acuity drastically decreasing (two levels or more), e.g.: 20/20 to 20/80
  • Preferential hyperacuity perimetry changes (for wet AMD)[4][5]
  • Blurred vision: Those with nonexudative macular degeneration may be asymptomatic or notice a gradual loss of central vision, whereas those with exudative macular degeneration often notice a rapid onset of vision loss (often caused by leakage and bleeding of abnormal blood vessels).
  • Central scotomas (shadows or missing areas of vision)
  • Trouble discerning colors, specifically dark ones from dark ones and light ones from light ones
  • A loss in contrast sensitivity
  • Straight lines appear curved in an Amsler grid

Macular degeneration by itself will not lead to total blindness. For that matter, only a very small number of people with visual impairment are totally blind. In almost all cases, some vision remains, mainly peripheral. Other complicating conditions may possibly lead to such an acute condition (severe stroke or trauma, untreated glaucoma, etc.), but few macular degeneration patients experience total visual loss.[6] The area of the macula comprises only about 2.1% of the retina, and the remaining 97.9% (the peripheral field) remains unaffected by the disease. Interestingly, even though the macula provides such a small fraction of the visual field, almost half of the visual cortex is devoted to processing macular information.[7]

The loss of central vision profoundly affects visual functioning. It is quite difficult, for example, to read without central vision. Pictures that attempt to depict the central visual loss of macular degeneration with a black spot do not really do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters six inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this difficult to do.

There is a loss of contrast sensitivity, so that contours, shadows, and color vision are less vivid. The loss in contrast sensitivity can be quickly and easily measured by a contrast sensitivity test performed either at home or by an eye specialist.

Similar symptoms with a very different etiology and different treatment can be caused by epiretinal membrane or macular pucker or any other condition affecting the macula, such as central serous retinopathy.

Like many age-related disorders, macular degeneration was once rare, but has become increasingly common in developed nations in the last 30 years due to the rapid growth in the number of people over 75 and poses a significant health care challenge as it is the most common cause of vision loss in adults, with the bulk of new cases occurring after the age of 80. By 2020, it is estimated that as many as 3 million Americans will be affected.[8]

Risk factors

  no data
  less than 100
  more than 240
  • Aging: About 10% of patients 66 to 74 years of age will have findings of macular degeneration. The prevalence increases to 30% in patients 75 to 85 years of age.[10]
  • Family history: The lifetime risk of developing late-stage macular degeneration is 50% for people who have a relative with macular degeneration, versus 12% for people who do not have relatives with macular degeneration.[10] Six mutations of the gene SERPING1 that are associated with AMD. Mutations in this gene can also cause hereditary angioedema.[11]
  • Macular degeneration gene: The genes for the complement system proteins factor H (CFH), factor B (CFB) and factor 3 (C3) are strongly associated with a person's risk for developing AMD. CFH is involved in inhibiting the inflammatory response mediated via C3b (and the alternative pathway of complement) both by acting as a cofactor for cleavage of C3b to its inactive form, C3bi, and by weakening the active complex that forms between C3b and factor B. C-reactive protein and polyanionic surface markers such as glycosaminoglycans normally enhance the ability of factor H to inhibit complement. But the mutation in CFH (Tyr402His) reduces the affinity of CFH for CRP and probably also alters the ability of factor H to recognise specific glycosaminoglycans. This change results in reduced ability of CFH to regulate complement on critical surfaces such as the specialised membrane at the back of the eye and leads to increased inflammatory response within the macula. In two 2006 studies, another gene that has implications for the disease, called HTRA1 (encoding a secreted serine protease), was identified.[12][13]
    The mitochondrial genome (mtDNA) in humans is contained on a single circular chromosome, 16,569 basepairs around, and each mitochondrion contains five to 10 copies of the mitochondrial chromosome. Several essential genes in mtDNA are involved in replication and translation, along with some genes that are crucial for the machinery that converts metabolic energy into ATP. These include NADH dehydrogenase, cytochrome C oxidase, ubiquinol/cytochrome C oxidoreductase, and ATP synthase, as well as the genes for unique ribosomal RNA and transfer RNA particles that are required for translating these genes into proteins.
    Specific diseases are associated with mutations in some of these genes. Below is one of the affected genes and the disease that arises from its mutation.
  • [14]
  • Drusen: CMSD studies indicate drusen are similar in molecular composition to plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. While there is a tendency for drusen to be blamed for the progressive loss of vision, drusen deposits can be present in the retina without vision loss. Some patients with large deposits of drusen have normal visual acuity. If normal retinal reception and image transmission are sometimes possible in a retina when high concentrations of drusen are present, then, even if drusen can be implicated in the loss of visual function, there must be at least one other factor that accounts for the loss of vision.
  • Arg80Gly variant of the complement protein C3: Two independent studies published in the New England Journal of Medicine and Nature Genetics in 2007 showed a certain common mutation in the C3 gene, which is a central protein of the complement system, is strongly associated with the occurrence of AMD.[15][16] The authors of both papers consider their study to underscore the influence of the complement pathway in the pathogenesis of this disease.
  • Hypertension (high blood pressure) Individuals with high blood pressure are more likely to be affected by age-related macular degeneration. This is because high blood pressure, like smoking, leads to a constriction, or narrowing, of the blood vessels in the choroid which gives blood and oxygen to the retina. This constriction limits the amount of blood able to circulate and give blood and oxygen to the retina and therefore having a negative effect on its health.
  • Cholesterol: Elevated cholesterol may increase the risk of AMD[17]
  • Obesity: Abdominal obesity is a risk factor, especially among men[18]
  • Fat intake Consuming high amounts of certain fats likely contributes to AMD, while monounsaturated fats are potentially protective.[19] In particular, ω-3 fatty acids may decrease the risk of AMD.[20]
  • Oxidative stress: Age-related accumulation of low-molecular-weight, phototoxic, pro-oxidant melanin oligomers within lysosomes in the retinal pigment epithelium may be partly responsible for decreasing the digestive rate of photoreceptor outer rod segments (POS) by the RPE. A decrease in the digestive rate of POS has been shown to be associated with lipofuscin formation - a classic sign associated with AMD.[21][22]
  • Fibulin-5 mutation: Rare forms of the disease are caused by genetic defects in fibulin-5, in an autosomal dominant manner. In 2004, Stone et al. performed a screen on 402 AMD patients and revealed a statistically significant correlation between mutations in fibulin-5 and incidence of the disease. Furthermore, the point mutants were found in the calcium-binding sites of the cbEGF domains of the protein. There is no structural basis for the effects of the mutations.
  • Race: Macular degeneration is more likely to be found in Caucasians than in people of African descent.[23][24]
  • Exposure to sunlight, especially blue light: Evidence is conflicting as to whether exposure to sunlight contributes to the development of macular degeneration. A recent study on 446 subjects found it does not.[25] Other research, however, has shown high-energy visible light may contribute to AMD.[26][27][28]
  • Vitamin D deficiency: higher vitamin D levels are associated with lower age-related macular degeneration risk in women[29]
  • Smoking: Smoking tobacco increases the risk of AMD by two to three times that of someone who has never smoked, and may be the most important modifiable factor in its prevention. A review of previous studies found "the literature review confirmed a strong association between current smoking and AMD. ... Cigarette smoking is likely to have toxic effects on the retina."[30]
  • Deletion of CFHR3 and CFHR1: Deletion of the complement factor H-related genes CFHR3 and CFHR1 protects against AMD.[31][32]


A practical application of AMD-associated markers is in the prediction of progression of AMD from early stages of the disease to neovascularization.[33][34]

Early work demonstrated a family of immune mediators was plentiful in drusen.[35] Complement factor H (CFH) is an important inhibitor of this inflammatory cascade, and a disease-associated polymorphism in the CFH gene strongly associates with AMD.[36][37][38][39][40] Thus an AMD pathophysiological model of chronic low grade complement activation and inflammation in the macula has been advanced.[41][42] Lending credibility to this has been the discovery of disease-associated genetic polymorphisms in other elements of the complement cascade including complement component 3 (C3).[43]

The role of retinal oxidative stress in the etiology of AMD by causing further inflammation of the macula is suggested by the enhanced rate of disease in smokers and those exposed to UV irradiation.[44][45][46] Mitochondria are a major source of oxygen free radicals that occur as a byproduct of energy metabolism. Mitochondrial gene polymorphisms, such as that in the MT-ND2 molecule, predicts wet AMD.[47][48]

A powerful predictor of AMD is found on chromosome 10q26 at LOC 387715. An insertion/deletion polymorphism at this site reduces expression of the ARMS2 gene though destabilization of its mRNA through deletion of the polyadenylation signal.[49][50] ARMS2 protein may localize to the mitochondria and participate in energy metabolism, though much remains to be discovered about its function.

Other gene markers of progression risk includes tissue inhibitor of metalloproteinase 3 (TIMP3), suggesting a role for intracellular matrix metabolism in AMD progression. Variations in cholesterol metabolising genes such as the hepatic lipase, cholesterol ester transferase, lipoprotein lipase and the ABC-binding cassette A1 correlate with disease progression. The early stigmata of disease, drusen, are rich in cholesterol, offering face validity to the results of genome-wide association studies.[51][52]


Human eye cross-sectional view

Starting from the inside of the eye and going towards the outer surface, the three main layers at the back of the eye are the retina, which is light-sensitive tissue that is considered part of the central nervous system and is actually brain tissue; the choroid, which is made up of a web of blood vessels; and the sclera, which is the tough, white, outer layer of the eyes.


Age-related macular degeneration begins with characteristic yellow deposits (drusen) in the macula, between the retinal pigment epithelium and the underlying choroid. Most people with these early changes (referred to as age-related maculopathy) still have good vision. People with drusen may or may not develop AMD, in fact the majority of people over age 55 have drusen with no negative effects. The risk of developing symptoms is higher when the drusen are large and numerous and associated with disturbance in the pigmented cell layer under the macula. Large and soft drusen are thought to be related to elevated cholesterol deposits.

Central geographic atrophy, the "dry" form of advanced AMD, results from atrophy of the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye.


Neovascular or exudative AMD, the "wet" form of advanced AMD, causes vision loss due to abnormal blood vessel growth (choroidal neovascularization) in the choriocapillaris, through Bruch's membrane. The proliferation of abnormal blood vessels in the retina is stimulated by vascular endothelial growth factor (VEGF). Unfortunately, these new vessels are fragile, ultimately leading to blood and protein leakage below the macula. Bleeding, leaking, and scarring from these blood vessels eventually cause irreversible damage to the photoreceptors and rapid vision loss if left untreated. Only about 10% of patients suffering from macular degeneration have the wet type.


Super resolution microscopic investigation of human eye tissue affected by AMD

The major symptoms of macular degeneration:[53]

  • When viewing an Amsler grid, some straight lines appear wavy and some patches appear blank
  • When viewing a Snellen chart, at least 2 lines decline
  • In dry macular degeneration, which occurs in 85-90 percent of AMD cases, drusen spots can be seen in Fundus photography
  • In wet macular degeneration, using angiography we can see leakage of bloodstream behind the macula
  • Using an electroretinogram, points in the macula with a weak or absent response compared to a normal eye may be found
  • Visual acuity and color sensitivity should be similar for red, green and blue (RGB)

Fluorescein angiography allows for the identification and localization of abnormal vascular processes. Optical coherence tomography is now used by most ophthalmologists in the diagnosis and the follow-up evaluation of the response to treatment by using either bevacizumab (Avastin) or ranibizumab (Lucentis), which are injected into the vitreous humor of the eye at various intervals.

Recently, structured illumination light microscopy using a specially designed super resolution microscope setup has been used to resolve the fluorescent distribution of small autofluorescent structures (lipofuscin granulae) in retinal pigment epithelium tissue sections.[54]



No medical or surgical treatment is available for this condition; however, the AREDS trial found benefits with some vitamin supplements along with high doses of antioxidants. The follow up study, AREDS2, showed that the antioxidants lutein and zeaxanthin also have benefits. These combinations of supplements have been suggested by the National Eye Institute and others to slow progression of the disease in people who have intermediate AMD, and those who have late AMD in one eye.[55] Though, the researchers stress that the AREDS formulation is not a cure, and will not restore vision already lost from AMD. The studies didn't prove that it helps people with early AMD, but it is reasonable to suggest that the benefits of the supplements also extend to those with early AMD. But, not all antioxidants are beneficial, higher beta-carotene intake was associated with an increased risk of AMD in addition to its association with increased lung cancers in smokers.[55][56]


Due to the involvement by vascular endothelial growth factor (VEGF) in the development of new blood vessels, antiangiogenics or anti-VEGF agents can cause regression of the abnormal blood vessels and improve vision when injected directly into the vitreous humor of the eye. The injections must be repeated monthly or bimonthly initially, but the treatment may be stopped if the condition becomes stabilized. Several antiangiogenic drugs have been approved for use in the eye by the FDA and regulatory agencies in other countries.

The first angiogenesis inhibitor, a monoclonal antibody against VEGF-A, was bevacizumab, which is approved for use in several cancers. Ranibizumab is a smaller fragment, Fab fragment, of the parent bevacizumab molecule specifically designed for eye injections. A controversy in the UK involved the off-label use of cheaper bevacizumab over the approved, but expensive, ranibizumab.[57] A recent randomized control trial found that bevacizumab and ranibizumab had similar efficacy, and reported no significant increase in adverse events with bevacizumab.[58] A 2014 Cochrane review found that the systemic safety of bevacizumab and ranibizumab are similar when used to treat neovascular AMD, except for gastrointestinal disorders.[59]

Other approved antiangiogenic drugs for the treatment of neo-vascular AMD include pegaptanib and aflibercept.[60]

Photodynamic therapy has also been used to treat wet AMD.[61] The drug verteporfin is administered intravenously; light of a certain wavelength is then applied to the abnormal blood vessels. This activates the verteporfin destroying the vessels.


A 2015 Cochrane review found not enough evidence to determine if statins have a role in preventing or slowing the progression of AMD.[62]


A 2012 Cochrane review found the use of vitamin and mineral supplements, alone or in combination, by the general population had no effect on whether or not AMD started,[63] a finding echoed by another review.[64] It; however, may slow down the worsening of AMD.[65] The review also questioned the possible harm of such supplements, given the increased risk of lung cancer in smokers with high intakes of beta-carotene, and the increased risk of heart failure in at-risk populations who consume high levels of vitamin E supplements.[66]

Adaptive devices

Josef Tal, an Israeli composer who was affected by macular degeneration, checks a manuscript using a CCTV desktop unit.

Because peripheral vision is not affected, people with macular degeneration can learn to use their remaining vision to partially compensate.[67] Assistance and resources are available in many countries and every state in the U.S.[68] Classes for "independent living" are given and some technology can be obtained from a state department of rehabilitation.

Adaptive devices can help people read. These include magnifying glasses, special eyeglass lenses, computer screen readers, and TV systems that enlarge reading material.

Computer screen readers such as JAWS or Thunder work with standard Windows computers.

Video cameras can be fed into standard or special-purpose computer monitors, and the image can be zoomed in and magnified. These systems often include a movable table to move the written material.

Accessible publishing provides larger fonts for printed books, patterns to make tracking easier, audiobooks and DAISY books with both text and audio.

Research directions

Cell based therapies using bone marrow stem cells as well as Retinal pigment epithelial transplantation are being studied.[69] Recent advancements within the field of stem cell research in the United States have led to the first human embryonic stem cell trial for dry AMD, which reports positive results.[70]

Notable cases

See also


  1. ^ "Bionic eyes: A new device may restore vision to those whose sight is dwindling".  
  2. ^ de Jong PT (2006). "Age-related macular degeneration".  
  3. ^ Ch. 25, Disorders of the Eye, Jonathan C. Horton, in Harrison's Principles of Internal Medicine, 16th ed.
  4. ^ [2]
  5. ^ "Preferential Hyperacuity Perimetry (PHP) as an Adjunct Diagnostic Tool to Funduscopy in Age–related Macular Degeneration - Ophthalmology Technology Spotlight". Medcompare. Retrieved 2011-01-11. 
  6. ^ Roberts, DL (September 2006). "The First Year--Age Related Macular Degeneration". (Marlowe & Company): 100. 
  7. ^ Roberts, DL (September 2006). "The First Year--Age Related Macular Degeneration". (Marlowe & Company): 20. 
  8. ^
  9. ^ "WHO Disease and injury country estimates". World Health Organization. 2009. Retrieved Nov 11, 2009. 
  10. ^ a b AgingEye Times (2009-05-19). "Macular Degeneration types and risk factors". Retrieved 2011-01-11. 
  11. ^ Hirschler, Ben (2008-10-07). "Gene discovery may help hunt for blindness cure". Reuters. Retrieved 2008-10-07. 
  12. ^ Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E; et al. (Nov 2006). "A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration". Science 314 (5801): 992–3.  
  13. ^ Dewan A, Liu M, Hartman S, et al. (November 2006). "HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration". Science 314 (5801): 989–92.  
  14. ^ ABCR Gene and Age-Related Macular Degeneration " Science. 1998""". 1998-02-20. Retrieved 2011-01-11. 
  15. ^ Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT (2007). "Complement C3 Variant and the Risk of Age-Related Macular Degeneration". N Engl J Med. 357 (6): 553–561.  
  16. ^ Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM (2007). "Variation in Complement Factor 3 is Associated with Risk of Age-Related Macular Degeneration". Nature Genetics 39 (10): 1200–1201.  
  17. ^ Dasari, Bhanu; Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O. (18 August 2011). "Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina". BMC Ophthalmol. 11: 22.  
  18. ^ Adams MK, Simpson JA, Aung KZ, et al., Adams MK, Simpson JA, Aung KZ, Makeyeva GA, Giles GG, English DR, Hopper J, Guymer RH, Baird PN, Robman LD. (1 June 2011). "Abdominal obesity and age-related macular degeneration". Am J Epidemiol. 173 (11): 1246–55.  
  19. ^ Parekh N, Voland RP, Moeller SM, et al., Parekh N, Voland RP, Moeller SM, Blodi BA, Ritenbaugh C, Chappell RJ, Wallace RB, Mares JA; CAREDS Research Study Group. (November 2009). "Association between dietary fat intake and age-related macular degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS): an ancillary study of the Women's Health Initiative". Arch Ophthalmol. 127 (11): 1483–93.  
  20. ^ John Paul SanGiovanni, ScD; Emily Y. Chew, MD; Traci E. Clemons, PhD; Matthew D. Davis, MD; Frederick L. Ferris III, MD; Gary R. Gensler, MS; Natalie Kurinij, PhD; Anne S. Lindblad, PhD; Roy C. Milton, PhD; Johanna M. Seddon, MD; and Robert D. Sperduto, MD (May 5, 2007). "The Relationship of Dietary Lipid Intake and Age-Related Macular Degeneration in a Case-Control Study". Archives of Ophthalmology. 
  21. ^ "Melanin aggregation and polymerization: possible implications in age related macular degeneration." Ophthalmic Research, 2005; volume 37: pages 136-141.
  22. ^ John Lacey, "Harvard Medical signs agreement with Merck to develop potential therapy for macular degeneration", 23-May-2006
  23. ^ Age-Related Eye Disease Study Research Group (Dec 2000). "Risk Factors Associated with Age-Related Macular Degeneration: A Case-control Study in the Age-Related Eye Disease Study: Age-Related Eye Disease Study Report Number 3". Ophthalmology 107 (12): 2224–32.  
  24. ^ Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL (April 2005). "Risk Factors for the Incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS Report No. 19". Ophthalmology 112 (4): 533–9.  
  25. ^ Khan, JC; Shahid H, Thurlby DA, Bradley M, Clayton DG, Moore AT, Bird AC, Yates JR, Genetic Factors in AMD Study (January 2006). "Age related macular degeneration and sun exposure, iris colour, and skin sensitivity to sunlight". The British Journal of Ophthalmology 90 (1): 29–32.  
  26. ^ Glazer-Hockstein, C; Dunaief JL (January 2006). "Could blue light-blocking lenses decrease the risk of age-related macular degeneration?". Retina 26 (1): 1–4.  
  27. ^ Margrain, TH; Boulton M; Marshall J; Sliney DH (September 2004). "Do blue light filters confer protection against age-related macular degeneration?". Progress in Retinal and Eye Research 23 (5): 523–31.  
  28. ^ Roberts, D (September 2005). "Artificial Lighting and the Blue Light Hazard". Macular Degeneration Support Online Library. 
  29. ^ "Vitamin D Status and Early Age-Related Macular Degeneration in Postmenopausal Women". Archives of Ophthalmology 129: 481.  
  30. ^ Eye. "Smoking and age-related macular degeneration: a review of association". Retrieved 2011-01-11. 
  31. ^ Hughes, Anne E; Orr, Nick; Esfandiary, Hossein; Diaz-Torres, Martha; Goodship, Timothy; Chakravarthy, Usha (2006). "A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration". Nature Genetics 38 (10): 1173–1177.  
  32. ^ Fritsche, L. G.; Lauer, N.; Hartmann, A.; Stippa, S.; et al. (2010). "An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD)". Human Molecular Genetics 19 (23): 4694–4704.  
  33. ^ Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J (2010). "Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration". Proc Natl Acad Sci U S A 107 (16): 7401–7406.  
  34. ^ Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S (2010). "Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC)". Proc Natl Acad Sci U S A 107 (16): 7395–7400.  
  35. ^ Mullins RF, Russell SR, Anderson DH, Hageman GS (2000). "Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease". FASEB J 14 (7): 835–46.  
  36. ^ Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI (2005). "A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration". Proc Natl Acad Sci USA 102 (20): 7227–32.  
  37. ^ Chen LJ, Liu DT, Tam PO, Chan WM, Liu K, Chong KK (2006). "Association of complement factor H polymorphisms with exudative age-related macular degeneration". Mol. Vis 12: 1536–42.  
  38. ^ Despriet DD, Klaver CC, Witteman JC, Bergen AA, Kardys I, de Maat MP (2006). "Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration". JAMA 296 (3): 301–9.  
  39. ^ Li M, Tmaca-Sonmez P, Othman M, Branham KE, Khanna R, Wade MS (2006). "CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration". Nature Genetics 38 (9): 1049–54.  
  40. ^ Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P (2005). "Complement factor H variant increases the risk of age-related macular degeneration". Science 308 (5720): 419–21.  
  41. ^ Rohrer B, Long Q, Coughlin B, Renner B, Huang Y, Kunchithapautham K (2010). "A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration". Adv Exp Med Biol. Advances in Experimental Medicine and Biology 703: 137–49.  
  42. ^ Kunchithapautham K, Rohrer B (May 2011). "Sublytic Membrane-Attack-Complex (MAC) Activation Alters Regulated Rather than Constitutive Vascular Endothelial Growth Factor (VEGF) Secretion in Retinal Pigment Epithelium Monolayers". J Biol Chem 286 (27): 23717–23724.  
  43. ^ Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H (2007). "Complement C3 variant and the risk of age-related macular degeneration". NEJM 357 (6): 553–61.  
  44. ^ ^ Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP (2005). "Smoking and age-related macular degeneration: a review of association". Eye 19 (9): 935–44.  
  45. ^ Tomany SC, Cruickshanks KJ, Klein R, Klein BE, Knudtson MD (2004). "Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study". Arch Ophthalmol 122 (5): 750–7.  
  46. ^ Szaflik JP, Janik-Papis K, Synowiec E, Ksiazek D, Zaras M, Wozniak K (2009). "DNA damage and repair in age-related macular degeneration". Mutat Res 669 (1–2): 167–176.  
  47. ^ Udar N, Atilano SR, Memarzadeh M, Boyer D, Chwa M, Lu S (2009). "Mitochondrial DNA Haplogroups Associated with Age-Related Macular Degeneration". Invest Ophthalmol Vis Sci 50 (6): 2966–74.  
  48. ^ Canter JA, Olson LM, Spencer K, Schnetz-Boutaud N, Anderson B, Hauser MA (2008). Nicholas Weedon, Michael, ed. "Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration". PLoS ONE 3 (5): e2091.  
  49. ^ Fritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN (2008). "Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA DNA damage and repair in age-related macular degeneration". NatGenet 40 (7): 892–896.  
  50. ^ Kenealy SJ, Schmidt S, Agarwal A, Postel EA, De La Paz MA, Pericak-Vance MA (2004). "Linkage analysis for age-related macular degeneration supports a gene on chromosome 10q26". Mol Vis 26 (10): 57–61. 
  51. ^ Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J (2010). "Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration". Proc Natl Acad Sci U S A 107 (16): 7401–6.  
  52. ^ Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S (2010). "Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC)". Proc Natl Acad Sci U S A. 107 (16): 7395–400.  
  53. ^ "Macular Degeneration Frequently Asked Questions". Retrieved December 11, 2013. 
  54. ^ Best G, Amberger R, Baddeley D, Ach T, Dithmar S, Heintzmann R and Cremer C (2011). Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron, 42, 330-335 doi:10.1016/j.micron.2010.06.016
  55. ^ a b Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P. (February 2008). "Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountain Eye Study". Ophthalmology. 115 (2): 334–41.  
  56. ^ Omenn, Gilbert S., "Effects of a Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease." New England Journal of Medicine 334.18 (1996): 1150-155. Web.
  57. ^ Copley, Caroline; Hirschler, Ben (April 24, 2012). "Novartis challenges UK Avastin use in eye disease". Reuters. 
  58. ^ Chakravarthy, U; Harding, SP; Rogers, CA; Downes, SM; Lotery, AJ; Culliford, LA; Reeves, BC; on behalf of the IVAN study, investigators (Jul 18, 2013). "Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial.". Lancet 382 (9900): 1258–67.  
  59. ^ Moja, L; Lucenteforte, E; Kwag, KH; Bertele, V; Campomori, A; Chakravarthy, U; D'Amico, R; Dickersin, K; Kodjikian, L; Lindsley, K; Loke, Y; Maguire, M; Martin, DF; Mugelli, A; Mühlbauer, B; Püntmann, I; Reeves, B; Rogers, C; Schmucker, C; Subramanian, ML; Virgili, G (Sep 15, 2014). "Systemic safety of bevacizumab versus ranibizumab for neovascular age-related macular degeneration.". The Cochrane database of systematic reviews 9: CD011230.  
  60. ^ FDA approves Eylea for macular degeneration
  61. ^ "Clinical effectiveness and cost–utility of photodynamic therapy for wet age-related macular degeneration: a systematic review and economic evaluation".  
  62. ^ Gehlbach, P; Li, T; Hatef, E (11 February 2015). "Statins for age-related macular degeneration.". The Cochrane database of systematic reviews 2: CD006927.  
  63. ^ Evans JR, Lawrenson JG (2012). Evans, Jennifer R, ed. "Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration". Cochrane Database Syst Rev 6: CD000253.  
  64. ^ Evans J (June 2008). "Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis". Eye 22 (6): 751–60.  
  65. ^ Evans, JR; Lawrenson, JG (14 November 2012). "Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration.". The Cochrane database of systematic reviews 11: CD000254.  
  66. ^ Evans JR; Evans, Jennifer R (2006). Evans, Jennifer R, ed. "Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration". Cochrane Database Syst Rev (2): CD000254.  
  67. ^ "Low Vision Rehabilitation Delivery Model". Retrieved 2011-01-11. 
  68. ^ "Agencies, Centers, Organizations, & Societies". 2005-09-01. Retrieved 2011-01-11. 
  69. ^ John S, et al. (2013). "Choice of cell source in cell based therapies for retinal damage due to age related macular degeneration (AMD): A review". Journal of Ophthalmology 2013: 1–9.  
  70. ^ Lanza, R; SD Schwartz (25 Feb 2012). "Embryonic stem cell trials for macular degeneration: a preliminary report.". Lancet.  
  71. ^ "Judi Dench 'can't read any more due to failing eye site", The Guardian, 23 February 2014
  72. ^ "Joan bows out to a standing ovation", The Guardian, 13 May 2014
  73. ^ "Patrons of the Macular Society", Macular Society
  74. ^ "Roseanne Barr's blindness and how to prevent her diseases", CNN

Further reading

  • Copley, Caroline; Hirschler, Ben (April 24, 2012). Potter, Mark, ed. Novartis challenges UK Avastin use in eye disease.  
  • John Sudhakar, Sundaram Natarajan, Periyasamy Parikumar, Mahesh Shanmugam, Rajappa Senthilkumar, David W Green, and Samuel JK Abraham (5 March). "Choice of cell source in cell based therapies for retinal damage due to age related macular degeneration (AMD): A review". Indian Journal of Ophthalmology 2013: 1–9.  

External links

  • Macular Degeneration Support
  • Macular Disease Foundation Australia
  • Macular Disease Society
  • Macular Degeneration Foundation
  • Macular Degeneration Support Canada
  • English Site of German organization SOS Eye Sight e.V.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.