World Library  
Flag as Inappropriate
Email this Article

Megascale engineering

Article Id: WHEBN0001065499
Reproduction Date:

Title: Megascale engineering  
Author: World Heritage Encyclopedia
Language: English
Subject: Exploratory engineering, Space elevator, Non-rocket spacelaunch, Kardashev scale, Space fountain
Collection: Engineering Projects, Exploratory Engineering, Megastructures
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Megascale engineering

Megascale engineering (or macro-engineering)[1] is a form of exploratory engineering concerned with the construction of structures on an enormous scale. Typically these structures are at least 1,000 kilometers in length—in other words, at least 1 megameter, hence the name. Such large-scale structures are termed megastructures.

In addition to large-scale structures, megascale engineering is also defined as including the transformation of entire planets into a human-habitable environment, a process known as terraforming or planetary engineering. This might also include transformation of the surface conditions, changes in the planetary orbit, and structures in orbit intended to modify the energy balance.

Astroengineering is the extension of megascale engineering to megastructures on a stellar scale or larger,[2] such as Dyson spheres,[3] Ringworlds, and Alderson disks.

Megascale engineering often plays a major part in the plot of science fiction movies and books. The micro-gravity environment of outer space provides several potential benefits for the engineering of these structures. These including minimizing the loads on the structure, the availability of large quantities of raw materials in the form of asteroids, and an ample supply of energy from the Sun. The capabilities to employ these advantages are not yet available, however, so they provide material for science fiction themes.

Quite a few megastructures have been designed on paper as exploratory engineering. However, the list of existing and planned megastructures is complicated by classifying what exactly constitutes a megastructure. By strict definition, no megastructures currently exist (with the space elevator being the only such project under serious consideration). By more lenient definitions, the Great Wall of China (6.7 Mm) counts as a megastructure.

A more complete list of conceptual and existing megastructures, along with a discussion of megastructure criteria, is found under megastructure.

Of all the proposed megastructures, only the orbital elevator,[4] the Lofstrom launch loop, and Martian or lunar space elevator concepts could be built using conventional engineering techniques, and are within the grasp of current material science. Carbon nanotubes may have the requisite tensile strength for the more technologically challenging Earth-based space elevator, but creation of nanotubes of the required length is a laboratory exercise, and adequate cable-scale technology has not yet been shown at all.

The assembly of structures more massive than a space elevator would likely involve a combination of new engineering techniques, new materials, and new technologies. Such massive construction projects might require the use of self-replicating machines to provide a suitably large "construction crew". The use of nanotechnology might provide both the self-replicating assemblers, and the specialized materials needed for such a project. Nanotechnology is, however, another area of speculative exploratory engineering at this time.

See also

References

  1. ^ Ćirković, Milan M. (2006). "Macro-Engineering in the Galactic Context: A New Agenda for Astrobiology". In Viorel Badescu, Richard Brook Cathcart, Roelof D. Schuiling. Macro-Engineering: A Challenge for the Future. Springer. p. 281.  
  2. ^ Timofeev, M. Y.; Kardashev, N. S.; Promyslov, V. G. (June 2000). "A search of the IRAS database for evidence of Dyson Spheres". Acta Astronautica 46 (10–12): 655–659.  
  3. ^ Galántai, Z. "Long Futures and Type IV Civilizations". Periodica Polytechnica, Social and Management Sciences 12 (1): 83–89. Retrieved 2009-05-30. 
  4. ^ McInnes, Colin R. (March–April 2005). "Dynamics of a Particle Moving Along an Orbital Tower". Journal of Guidance, Control, and Dynamics 28 (2). Retrieved 2009-05-30. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.