World Library  
Flag as Inappropriate
Email this Article

Memory coherence

Article Id: WHEBN0000399818
Reproduction Date:

Title: Memory coherence  
Author: World Heritage Encyclopedia
Language: English
Subject: Distributed shared memory, Parallel computing, MESIF protocol, Uncore, Yield method
Collection: Computer Memory, Parallel Computing
Publisher: World Heritage Encyclopedia

Memory coherence

Memory coherence is an issue that affects the design of computer systems in which two or more processors or cores share a common area of memory.[1][2][3][4]

In a uniprocessor system (whereby, in today's terms, there exists only one core), there is only one processing element doing all the work and therefore only one processing element that can read or write from/to a given memory location. As a result, when a value is changed, all subsequent read operations of the corresponding memory location will see the updated value, even if it is cached.

Conversely, in multiprocessor (or multicore) systems, there are two or more processing elements working at the same time, and so it is possible that they simultaneously access the same memory location. Provided none of them changes the data in this location, they can share it indefinitely and cache it as they please. But as soon as one updates the location, the others might work on an out-of-date copy that, e.g., resides in their local cache. Consequently, some scheme is required to notify all the processing elements of changes to shared values; such a scheme is known as a "memory coherence protocol", and if such a protocol is employed the system is said to have a "coherent memory".

The exact nature and meaning of the memory coherency is determined by the consistency model that the coherence protocol implements. In order to write correct concurrent programs, programmers must be aware of the exact consistency model that is employed by their systems.

When implemented in hardware, the coherency protocol can, e.g., be directory based or employ snooping (a.k.a. "sniffing"). Examples of specific protocols are the MSI protocol and its derivatives MESI, MOSI and MOESI.

See also


  1. ^
  2. ^
  3. ^
  4. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.