World Library  
Flag as Inappropriate
Email this Article

Micro-operation

Article Id: WHEBN0005007818
Reproduction Date:

Title: Micro-operation  
Author: World Heritage Encyclopedia
Language: English
Subject: Pentium Pro, Reduced instruction set computing, Memory hierarchy, Cyrix 6x86, UOP
Collection: Central Processing Unit, Instruction Processing
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Micro-operation

A high-level illustration showing the decomposition of machine instructions into micro-operations, performed during typical fetch-decode-execute cycles.[1]:1

In [2]:8–9

Usually, micro-operations perform basic operations on data stored in one or more registers, including transferring data between registers or between registers and external buses of the central processing unit (CPU), and performing arithmetic or logical operations on registers. In a typical fetch-decode-execute cycle, each step of a macro-instruction is decomposed during its execution so the CPU determines and steps through a series of micro-operations. The execution of micro-operations is performed under control of the CPU's control unit, which decides on their execution while performing various optimizations such as reordering, fusion and caching.[1]

Optimizations

Various forms of μops have long been the basis for traditional microcode routines used to simplify the implementation of a particular CPU design or perhaps just the sequencing of certain multi-step operations or addressing modes. More recently, μops have also been employed in a different way in order to let modern "CISC" processors more easily handle asynchronous parallel and speculative execution: As with traditional microcode, one or more table lookups (or equivalent) is done to locate the appropriate μop-sequence based on the encoding and semantics of the machine instruction (the decoding or translation step), however, instead of having rigid μop-sequences controlling the CPU directly from a microcode-ROM, μops are here dynamically issued, that is, buffered in rather long sequences before being executed.[3]:6–7, 9–11

This buffering means that the fetch and decode stages can be more detached from the execution units than is feasible in a more traditional microcoded (or "hard-wired") design. As this allows a degree of freedom regarding execution order, it makes some extraction of [2]:89–91, 105–106[3]:6–7, 9–15

Execution optimization has gone even further; processors not only translate many machine instructions into a series of μops, but also do the opposite when appropriate; they combine certain machine instruction sequences (such as a compare followed by a conditional jump) into a more complex μop which fits the execution model better and thus can be executed faster or with less machine resources involved. This is also known as macro-op fusion.[2]:106–107[3]:12–13

Another way to try to improve performance is to cache the decoded micro-operations, so that if the same macroinstruction is executed again, the processor can directly access the decoded micro-operations from a special cache, instead of decoding them again. The Execution Trace Cache found in Intel NetBurst microarchitecture (Pentium 4) is a widespread example of this technique.[4] The size of this cache may be stated in terms of how many thousands of micro-operations it can store: kμops.[5]

See also

References

  1. ^ a b "Computer Organization and Architecture, Chapter 15. Control Unit Operation" (PDF). umcs.maine.edu. 2010-03-16. Retrieved 2014-12-29. 
  2. ^ a b c Agner Fog (2014-02-19). "The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and compiler makers" (PDF). agner.org. Retrieved 2014-03-21. 
  3. ^ a b c Michael E. Thomadakis (2011-03-17). "The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms" (PDF). Texas A&M University. Retrieved 2014-03-21. 
  4. ^ "Intel Pentium 4 1.4GHz & 1.5GHz". AnandTech. 2000-11-20. Retrieved 2013-10-06. 
  5. ^ Baruch Solomon; Avi Mendelson; Doron Orenstein; Yoav Almog; Ronny Ronen (August 2001). "Micro-Operation Cache: A Power Aware Frontend for Variable Instruction Length ISA" (PDF).  


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.