Minimalist grammar

Minimalist grammars are a class of formal grammars that aim to provide a more rigorous, usually proof-theoretic, formalization of Chomskyan Minimalist program than is normally provided in the mainstream Minimalist literature. A variety of particular formalizations exist, often developed by Edward Stabler, Alain Lecomte, Christian Retoré, or combinations thereof.

Lecomte and Retoré's extensions of the Lambek Calculus

Lecomte and Retoré (2001) [1] introduces a formalism that modifies that core of the Lambek Calculus to allow for movement-like processes to be described without resort to the combinatorics of Combinatory categorial grammar. The formalism is presented in proof-theoretic terms. Differing only slightly in notation from Lecomte and Retoré (2001), we can define a minimalist grammar as a 3-tuple G = (C, F, L), where C is a set of "categorial" features, F is a set of "functional" features (which come in two flavors, "weak", denoted simply f, and "strong", denoted f*), and L is a set of lexical atoms, denoted as pairs w : t, where w is some phonological/orthographic content, and t is a syntactic type defined recursively as follows:

all features in C and F are (atomic) types, and
if X and Y are types, so are X/Y, X\Y, and X \circ Y are types.

We can now define 6 inferences rules:


\vdash w : X, for all w : X \in L


w : X \vdash w : X, for all w : X \notin L


\frac{\Gamma \vdash a : X/Y \qquad \Gamma' \vdash b : Y}{\Gamma; \Gamma' \vdash ab : X}[/E]


\frac{\Gamma' \vdash b : Y \qquad \Gamma \vdash a : X\backslash Y}{\Gamma'; \Gamma \vdash ba : X}[\backslash E]


\frac{\Gamma; \Gamma' \vdash \alpha}{\Gamma, \Gamma' \vdash \alpha} entropy


\frac{\Gamma \vdash a : X \circ Y \qquad \Delta, b : X, c : Y, \Delta' \vdash d : Z}{\Delta, \Gamma, \Delta' \vdash d[b := a, c := a] : Z}[\circ E]


The first rule merely makes it possible to use lexical items with no extra assumptions. The second rule is just a means of introducing assumptions into the derivation. The third and fourth rules just perform directional feature checking, combining the assumptions required to build the subparts that are being combined. The entropy rule presumably allows the ordered sequents to be broken up into unordered sequents. And finally, the last rule implements "movement" by means of assumption elimination.

Th last rule can be given a number of different interpretations in order to fully mimic movement of the normal sort found in the Minimalist Program. The account given by Lecomte and Retoré (2001) is that if one of the product types is a strong functional feature, then the phonological/orthographic content associated with that type on the right is substituted with the content of the a, and the other is substituted with the empty string; whereas if neither is strong, then the phonological/orthographic content is substituted for the category feature, and the empty string is substituted for the weak functional feature. That is, we can rephrase the rule as two sub-rules as follows:


\frac{\Gamma \vdash a : X \circ Y^{*} \qquad \Delta, b : X, c : Y^{*}, \Delta' \vdash d : Z}{\Delta, \Gamma, \Delta' \vdash d[b := \epsilon, c := a] : Z}[\circ E_{strong}] where X \in C, Y^{*} \in F


\frac{\Gamma \vdash a : X \circ Y \qquad \Delta, b : X, c : Y, \Delta' \vdash d : Z}{\Delta, \Gamma, \Delta' \vdash d[b := a, c := \epsilon] : Z}[\circ E_{weak}] where X \in C, Y \in F


Another alternative would be to construct pairs in the /E and \E steps, and use the \circ E rule as given, substituting the phonological/orthographic content a into the highest of the substitution positions, and the empty string in the rest of the positions. This would be more in line with the Minimalist Program, given that multiple movements of an item are possible, where only the highest position is "spelled out".

Example

As a simple example of this system, we can show how to generate the sentence who did John see with the following toy grammar:

Let G = (\{N, S\}, \{W\}, L), where L contains the following words:

\text{John} : N\
\text{see} : (S\backslash N)/N
\text{did} : (S\backslash W)/S
\text{who} : N \circ W

The proof for the sentence who did John see is therefore:

\dfrac{

\vdash \text{who} : N \circ W \quad \dfrac{ \text{x} : W \vdash \text{x} : W \quad \dfrac{ \vdash \text{did} : (S\backslash W)/S \quad \dfrac{ \vdash \text{John} : N \quad \dfrac{ \text{y} : N \vdash \text{y} : N \quad \vdash \text{see} : (S\backslash N)/N }{ \text{y} : N \vdash \text{see y} : S\backslash N }[/E] }{ \text{y} : N \vdash \text{John see y} : S }[\backslash E] }{ \text{y} : N \vdash \text{did John see y} : S\backslash W }[/E] }{ \text{x} : W, \text{y} : N \vdash \text{x did John see y} : S }[\backslash E] }{ \vdash \text{who did John see} : S }[\circ E]

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.