World Library  
Flag as Inappropriate
Email this Article

Mitsubishi 4A9 engine

Article Id: WHEBN0006391374
Reproduction Date:

Title: Mitsubishi 4A9 engine  
Author: World Heritage Encyclopedia
Language: English
Subject: Mitsubishi Lancer, INVECS, Mitsubishi 3B2 engine, Mitsubishi RISE, Twin Clutch SST
Collection: Mitsubishi Motors Engines
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Mitsubishi 4A9 engine

4A9
Overview
Manufacturer MDC Power
Production 2004–present
Combustion chamber
Cylinder block alloy Aluminum die cast
Cylinder head alloy Aluminum die cast
Valvetrain Direct acting DOHC, 16 valves, continuously variable MIVEC intake valve timing
Chronology
Predecessor Mitsubishi 4G1 engine

The Mitsubishi 4A9 engine is the newest family range of all-alloy inline four-cylinder engines from Mitsubishi Motors, introduced in the 2004 version of their Mitsubishi Colt supermini, and built by DaimlerChrysler-owned MDC Power in Germany (previously a joint venture).[1][2]

The engine project was begun as a joint effort by Mitsubishi Motors and DaimlerChrysler (DCX), with Mitsubishi handling the development of the engines and MDC Power GmbH, a company previously jointly established by Mitsubishi and DCX, handling production. The 4A9 is Mitsubishi's first four-cylinder engine family to adopt a high-pressure die-cast aluminum block.[1][3]

All engines developed within this family have aluminum cylinder block and head, four valves per cylinder, double overhead camshaft layouts, and MIVEC continuous variable valve timing (intake only).

Contents

  • Engine family characteristics 1
  • 4A90 2
    • Specifications 2.1
    • Applications 2.2
  • 4A91 3
    • Specifications 3.1
    • Applications 3.2
  • 4A92 4
    • Specifications 4.1
    • Applications 4.2
  • See also 5
  • References 6
  • External links 7

Engine family characteristics

For high output and low fuel consumption, the MIVEC system and other measures (including optimized shaping of the intake and exhaust manifolds and cylinder head) were used to promote intake and exhaust efficiency. Optimally shaped cooling passages in the cylinder head and optimal control of the flow of coolant into the cylinder head help to suppress engine knocking. Comprehensive measures to engine components were taken to minimize friction.[1]

For lightness and compactness; design optimization, material optimization, and component integration were identified as effective means of minimizing weight and bulk, so they were comprehensively effected in combination with each other. With regard to materials, the cylinder block is made of aluminum; the cylinder-head cover and intake manifold are made of plastic; the exhaust manifold has a pipe-based structure and cams driven by a timing chain. Component integration was applied in many areas of the engine. Notably, the functions of engine accessories were integrated into the cylinder block.[1]

Exhaust emissions from the engine are minimized by measures including optimal design of the combustion chambers, optimal control of the intake air motion by means of the cylinder-head ports, employment of the MIVEC system, employment of an ultra-thin cylinder head gasket, and employment of micro-droplet fuel injectors. The vehicle's overall exhaust emissions are further suppressed by location of the exhaust manifold at the rear of the engine. This layout is beneficial since it minimizes the heat capacity of the exhaust system upstream of the catalytic converter and thus, together with combustion control, promotes activation of the catalytic converter.[1]

4A91's DOHC camshafts are driven by a single-stage roller chain of 8.0 mm (0.3 in) pitch and 12.5 mm (0.5 in) width, instead of the previous 4G15's cogged belt drive. Camshafts act directly on bucket-type tappets. The intake camshaft is fitted with a continuously variable cam-phasing, altering timing up to 50 degrees. Valves are inclined at an included angle of 34 degrees versus the 4G15's wider 45 degrees.[3]

4A90

Specifications

Engine type — DOHC 16v, ECI multiple
Displacement — 1332 cc
Bore pitch — 83.0 mm
Bore — 75.0 mm
Stroke — 75.4 mm
Compression ratio — 10.5:1
Power — 70 kW (95 PS) at 6000 rpm
Torque — 125 N·m (92 lb·ft) at 4000 rpm

Applications

4A91

Specifications

Engine type — DOHC 16v, ECI multiple
Displacement — 1499 cc
Bore pitch — 83.0 mm
Bore — 75.0 mm
Stroke — 84.8 mm
Compression ratio — 10.5:1
Power — 109 hp (81 kW; 111 PS) at 6000 rpm
Torque — 145 N·m (107 lb·ft) at 4000 rpm

Applications

4A92

Specifications

Engine type — DOHC 16v,ECI multiple
Displacement — 1590 cc
Bore pitch — ??.? mm
Bore — 75.0 mm
Stroke — 90.0 mm
Compression ratio — 11.0:1
Power — 86 kW (117 PS) at 6000 rpm
Torque — 154 N·m (114 lb·ft) at 4000 rpm

Applications

See also

References

  1. ^ a b c d e "Newly Developed Compact, Aluminum Gasoline Engine", Mitsubishi Motors technical review
  2. ^ "Mitsubishi Motors Corporation and DaimlerChrysler AG have signed agreements concerning the production halt of the smart forfour", Mitsubishi Motors press release
  3. ^ a b "Colt Plus gets MDC Power", Jack Yamaguchi, SAE International
  4. ^ http://baic.cl/up-hatchback/

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.