World Library  
Flag as Inappropriate
Email this Article

Multiscale modeling

Article Id: WHEBN0004003614
Reproduction Date:

Title: Multiscale modeling  
Author: World Heritage Encyclopedia
Language: English
Subject: Jason Reese, ICME cyberinfrastructure, WikiProject Spam/COIReports/2008, Jul 16, Integrated computational materials engineering, Microscale and macroscale models
Publisher: World Heritage Encyclopedia

Multiscale modeling

In engineering, mathematics, physics, meteorology and computer science, multiscale modeling (Steinhauser 2008[1]) is the field of solving physical problems which have important features at multiple scales, particularly multiple spatial and(or) temporal scales. Important problems include scale linking (Baeurle 2009,[2] de Pablo 2011,[3] Knizhnik 2002,[4] Adamson 2007[5]). Horstemeyer 2009[6] presented historical review of the different disciplines (solid mechanics, numerical methods, mathematics, physics, and materials science) for solid materials related to multiscale materials modeling. Martin Karplus, Michael Levitt, Arieh Warshel were awarded a Nobel Prize in Chemistry for the development of a multiscale model method using both classical and quantum mechanical theory which were used to model large complex chemical systems and reactions.

Multiscale modeling in physics en chemistry is aimed to calculation of material properties or system behavior on one level using information or models from different levels. On each level particular approaches are used for description of a system. Following levels are usually distinguished: level of quantum mechanical models (information about electrons is included), level of molecular dynamics models (information about individual atoms is included), mesoscale or nano level (information about groups of atoms and molecules is included), level of continuum models, level of device models. Each level addresses a phenomenon over a specific window of length and time. Multiscale modeling is particularly important in integrated computational materials engineering since it allows to predict material properties or system behavior based on knowledge of the atomistic structure and properties of elementary processes.

In decision theory and multiscale mathematics and is referred to as multiscale decision-making. Multiscale decision-making draws upon the analogies between physical systems and complex man-made systems.

In Meteorology, multiscale modeling is the modeling of interaction between weather systems of different spatial and temporal scales that produces the weather that we experience finally. The most challenging task is to model the way through which the weather systems interact as models cannot see beyond the limit of the model grid size. In other words, to run an atmospheric model that is having a grid size (very small ~ 500 m) which can see each possible cloud structure for the whole globe is computationally very expensive. On the other hand, a computationally feasible Global climate model (GCM, with grid size ~ 100 km, cannot see the smaller cloud systems. So we need to come to a balance point so that the model becomes computationally feasible and at the same time we do not lose much information, with the help of making some rational guesses, a process called Parametrization.

See also


  1. ^ Steinhauser, M. O. (2008). Multiscale Modeling of Fluids and Solids - Theory and Applications.  
  2. ^ Baeurle, S. A. (2008). "Multiscale modeling of polymer materials using field-theoretic methodologies: A survey about recent developments". Journal of Mathematical Chemistry 46 (2): 363.  
  3. ^ De Pablo, Juan J. (2011). "Coarse-Grained Simulations of Macromolecules: From DNA to Nanocomposites". Annual Review of Physical Chemistry 62: 555–74.  
  4. ^ Knizhnik, A.A.; Bagaturyants, A.A.; Belov, I.V.; Potapkin, B.V.; Korkin, A.A. (2002). "An integrated kinetic Monte Carlo molecular dynamics approach for film growth modeling and simulation: ZrO2 deposition on Si surface". Computational Materials Science 24: 128.  
  5. ^ Adamson, S.; Astapenko, V.; Chernysheva, I.; Chorkov, V.; Deminsky, M.; Demchenko, G.; Demura, A.; Demyanov, A. et al. (2007). "Multiscale multiphysics nonempirical approach to calculation of light emission properties of chemically active nonequilibrium plasma: Application to Ar GaI3 system". Journal of Physics D: Applied Physics 40 (13): 3857.  
  6. ^ Horstemeyer, M. F. (2009). "Multiscale Modeling: A Review". In Leszczyński, Jerzy; Shukla, Manoj K. Practical Aspects of Computational Chemistry: Methods, Concepts and Applications. pp. 87–135.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.