World Library  
Flag as Inappropriate
Email this Article

Nanoscale iron particles

Article Id: WHEBN0012340141
Reproduction Date:

Title: Nanoscale iron particles  
Author: World Heritage Encyclopedia
Language: English
Subject: Carbon nanotube, Quantum dot, Nanomaterials, Förster coupling, Platinum nanoparticles
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Nanoscale iron particles

Nanoscale iron particles are sub-micrometer particles of iron metal. They are highly reactive because of their large surface area. In the presence of oxygen and water, they rapidly oxidize to form free iron ions. They are widely used in medical and laboratory applications and have also been studied for remediation of industrial sites contaminated with chlorinated organic compounds.

Synthesis

Iron nanoparticles can be synthesized by the reduction of Fe(II) or Fe(III) salt with sodium borohydride in an aqueous medium.


Reactivity

When exposed to oxygen and water, iron oxidizes. This redox process can occur under either acidic or neutral/basic conditions:

2 Fe0(s) + 4 H+(aq) + O2(aq) → 2 Fe2+(aq) + 2 H2O(l)
Fe0(s) + 2 H2O (aq) → Fe2+(aq) + H2(g) + 2 OH-(aq)

Research

Research has shown that nanoscale iron particles can be effectively used to treat several forms of in situ treatment. Additionally, the nanoparticle-water slurry can be injected into the contaminated area and stay there for long periods of time.[1] These factors combine to make this method of cheaper than most currently used alternative.

Researchers have found that although metallic iron nanoparticles remediate contaminants well, they tend to agglomerate on the soil surfaces. In response, carbon nanoparticles and water-soluble polyelectrolytes have been used as supports to the metallic iron nanoparticles. The hydrophobic contaminants adsorb to these supports, improving permeability in sand and soil.[1]

In field tests have generally confirmed lab findings. However, research is still ongoing and nanoscale iron particles are not yet commonly used for treating ground contamination.

See also

References

  1. ^ a b Zhang, Wei-xian (2003). "Nanoscale iron particles for environmental remediation: an overview".  

2.http://www.chalcogen.infim.ro/1771_Yuvakkaur.pdf

External links

  • National Nanotechnology Initiative
  • Nanotechnology methods to clean up water pollution
  • Largescale production and applications of zero-valent iron nanoparticles (nZVI)


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.