World Library  
Flag as Inappropriate
Email this Article

Neurochip

Article Id: WHEBN0002035310
Reproduction Date:

Title: Neurochip  
Author: World Heritage Encyclopedia
Language: English
Subject: Neuroscience, Cultured neuronal network, EOSFET, Neurometrics, Integrative neuroscience
Collection: Brain–computer Interfacing, Integrated Circuits
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Neurochip

A neurochip is a chip (integrated circuit/microprocessor) that is designed for the interaction with neuronal cells.

Contents

  • Formation 1
  • Applications 2
  • See also 3
  • References 4
  • External links 5

Formation

It is made of silicon that is doped in such a way that it contains EOSFETs (electrolyte-oxide-semiconductor FET) that can sense the electrical activity of the neurons (action potentials) in the above-standing physiological electrolyte solution. It also contains capacitors for the electrical stimulation of the neurons. The University of Calgary, Faculty of Medicine scientists who proved it is possible to cultivate a network of brain cells that reconnect on a silicon chip—or the brain on a microchip—have developed new technology that monitors brain cell activity at a resolution never achieved before.

Developed with the National Research Council Canada (NRC), the new silicon chips are also simpler to use, which will help future understanding of how brain cells work under normal conditions and permit drug discoveries for a variety of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s.

Naweed Syed's lab cultivated brain cells on a microchip. The new technology from the lab of Naweed Syed, in collaboration with the NRC, was published online in August 2010, in the journal, Biomedical Devices.[1]

“This technical breakthrough means we can track subtle changes in brain activity at the level of ion channels and synaptic potentials, which are also the most suitable target sites for drug development in neurodegenerative diseases and neuropsychological disorders,” says Syed, professor and head of the Department of Cell Biology and Anatomy, member of the Hotchkiss Brain Institute and advisor to the Vice President Research on Biomedical Engineering Initiative of the University of Chicago.

The new neurochips are also automated, meaning that anyone can learn to place individual brain cells on them. Previously it took years of training to learn how to record ion channel activity from brain cells, and it was only possible to monitor one or two cells simultaneously. Now, larger networks of cells can be placed on a chip and observed in minute detail, allowing the analysis of several brain cells networking and performing automatic, large-scale drug screening for various brain dysfunctions.[2]

This new technology has the potential to help scientists in a variety of fields and on a variety of research projects. Gerald Zamponi, professor and head of the Department of Physiology and Pharmacology, and member of the Hotchkiss Brain Institute, says, “This technology can likely be scaled up such that it will become a novel tool for medium throughput drug screening, in addition to its usefulness for basic biomedical research”.[3]

"In previous studies, researchers developed a neurochip that could directly stimulate and record brain cell activity. Now, Orly Yadid-Pecht and Naweed Syed have successfully developed a novel lab-on-a-chip technology that, through an ultra-sensitive component built directly on the microchip, also enables direct imaging of activity in brain cells."[4]

Applications

Present applications are neuron research. Future applications (still in the experimental phase) are retinal implants or brain implants.

See also

References

  1. ^ Carolyn Abraham (August 9, 2010). "'"Calgary scientists to create human 'neurochip.  
  2. ^ "Coming Soon: Human Brain On A Microchip". Coming Soon: Human Brain On A Microchip. August 11, 2010. Retrieved April 16, 2014. 
  3. ^ "Neurochips monitor cells at unprecedented resolution".  
  4. ^ "New advances for neurochip" UToday, University of Calgary August 1, 2012

External links

  • Video interview with Dr. Naweed Syed, Hotchkiss Brain Institute, Neurochip co-lead researcher, Published Aug 17, 2012
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.