This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000685457 Reproduction Date:
Nootropics ( )—also called smart drugs, memory enhancers, neuro enhancers, cognitive enhancers, and intelligence enhancers—are drugs, supplements, nutraceuticals, and functional foods that improve one or more aspects of mental function. Specific effects can include improvements to working memory, motivation, or attention.[1][2] The word nootropic was coined in 1972 by a Romanian psychologist and chemist, Corneliu E. Giurgea,[3][4] from the Greek words νους nous, or "mind", and τρέπειν trepein meaning to bend or turn.[5]
There are only a few drugs that are known to improve some aspect of cognition. Many more are in different stages of development.[6] The most commonly used class of drug is stimulants, such as caffeine.[7]
These drugs are purportedly used primarily to treat cognitive or motor function difficulties attributable to disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and ADHD. Some researchers, however, report more widespread use despite concern for further research.[8] Nevertheless, intense marketing may not correlate with efficacy. While scientific studies support the beneficial effects of some compounds, manufacturer's marketing claims for dietary supplements are usually not formally tested and verified by independent entities.[9]
In academia, nootropics have been used to increase productivity, despite their long-term effects lacking conclusive research in healthy individuals.[6] The use of prescription stimulants is especially prevalent among students attending academically competitive colleges.[10] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetime.[11][12][13] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[6] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for performance enhancement rather than as recreational drugs.[14][15][16]
Several factors positively and negatively influence the use of drugs to increase cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[11][12][17][18]
The main concern with pharmaceutical drugs is adverse effects, and these concerns apply to cognitive-enhancing drugs as well. Long-term safety data is typically unavailable for some types of nootropics[6] (e.g., many non-pharmaceutical cognitive enhancers, newly developed pharmaceuticals and pharmaceuticals with short-term therapeutic use). Racetams—compounds that are structurally related to piracetam—have few serious adverse effects and low toxicity, but there is little evidence that they enhance cognition in individuals without cognitive impairments.[19][20] While addiction to stimulants is sometimes identified as a cause for concern,[21] a very large body of research on the therapeutic use of the "more addictive" psychostimulants indicate that addiction is fairly rare in therapeutic doses.[22][23][24] On their safety profile, a systematic review from June 2015 asserted, "Evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers."[25]
In the United States, unapproved drugs or dietary supplements do not require efficacy approval before being sold.[26]
In 2015, systematic medical reviews and meta-analyses of clinical research in humans established consensus that certain stimulants, only when used at low (therapeutic) concentrations, unambiguously enhance cognition in the general population;[25][27][28][29] in particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both receptors in the prefrontal cortex.[25][27][29] Relatively high doses of stimulants cause cognitive deficits.[29][30]
The racetams are structurally similar compounds, such as pramiracetam, oxiracetam, coluracetam, and aniracetam, which are often marketed as cognitive enhancers and sold over-the-counter. Racetams are often referred to as nootropics, but this property of the drug class is not well established.[51] The racetams have poorly understood mechanisms of action; however, piracetam and aniracetam are known to act as positive allosteric modulators of AMPA receptors and appear to modulate cholinergic systems.[52]
Overall, 11.3% of responders admitted to misusing prescription stimulants. There was more misuse by respiratory therapy students, although this was not statistically significant (10.9% medicine, 9.7% pharmacy, 26.3% respiratory therapy; P = .087). Reasons for prescription stimulant misuse included to enhance alertness/energy (65.9%), to improve academic performance (56.7%), to experiment (18.2%), and to use recreationally/get high (4.5%).
The present meta-analysis was conducted to estimate the magnitude of the effects of methylphenidate and amphetamine on cognitive functions central to academic and occupational functioning, including inhibitory control, working memory, short-term episodic memory, and delayed episodic memory. In addition, we examined the evidence for publication bias. Forty-eight studies (total of 1,409 participants) were included in the analyses. We found evidence for small but significant stimulant enhancement effects on inhibitory control and short-term episodic memory. Small effects on working memory reached significance, based on one of our two analytical approaches. Effects on delayed episodic memory were medium in size. However, because the effects on long-term and working memory were qualified by evidence for publication bias, we conclude that the effect of amphetamine and methylphenidate on the examined facets of healthy cognition is probably modest overall. In some situations, a small advantage may be valuable, although it is also possible that healthy users resort to stimulants to enhance their energy and motivation more than their cognition. ... Earlier research has failed to distinguish whether stimulants’ effects are small or whether they are nonexistent (Ilieva et al., 2013; Smith & Farah, 2011). The present findings supported generally small effects of amphetamine and methylphenidate on executive function and memory. Specifically, in a set of experiments limited to high-quality designs, we found significant enhancement of several cognitive abilities. ... The results of this meta-analysis cannot address the important issues of individual differences in stimulant effects or the role of motivational enhancement in helping perform academic or occupational tasks. However, they do confirm the reality of cognitive enhancing effects for normal healthy adults in general, while also indicating that these effects are modest in size.
Mild dopaminergic stimulation of the prefrontal cortex enhances working memory. ... Therapeutic (relatively low) doses of psychostimulants, such as methylphenidate and amphetamine, improve performance on working memory tasks both in in normal subjects and those with ADHD. Positron emission tomography (PET) demonstrates that methylphenidate decreases regional cerebral blood flow in the doroslateral prefrontal cortex and posterior parietal cortex while improving performance of a spacial working memory task. This suggests that cortical networks that normally process spatial working memory become more efficient in response to the drug. ... [It] is now believed that dopamine and norepinephrine, but not serotonin, produce the beneficial effects of stimulants on working memory. At abused (relatively high) doses, stimulants can interfere with working memory and cognitive control ... stimulants act not only on working memory function, but also on general levels of arousal and, within the nucleus accumbens, improve the saliency of tasks. Thus, stimulants improve performance on effortful but tedious tasks ... through indirect stimulation of dopamine and norepinephrine receptors.
Cognitive deficits, such as an impairment of attention, memory and problem solving, have often been reported in patients with depressive disorders (69). Cognitive deficits and memory impairments in patients with depression may arise via disruption of the hypothalamic-pituitary adrenal (HPA) axis through hippocampal volume loss and changes in the amygdala. The magnitude of the hippocampal shrinkage reported in certain experimental conditions may partly underlie some of cognitive deficits that accompany major depression. Conversely, any prevention or restoration of these morphological changes in the hippocampus should be parallel to procognitive/promnesiant effects. Accordingly, tianeptine has particularly favorable effects on cognitive functions and the positive effect of tianeptine may be mediated through its upregulation of neurogenesis, but of course, the impact of neurogenesis on cognitive functions remains a matter of controversial debate. Tianeptine prevents and reverses stress-induced glucocorticoid-mediated dendritic remodeling in CA3 pyramidal neurons in the hippocampus (40,41) and stress-induced increases in dendritic length and branching in the amygdala (50). Tianeptine blocks the dendritic remodeling caused by stress or glucocorticoids (41), blocks stress-induced impairments of spatial memory performance in radial and Y-maze (70,71) and antagonizes the deleterious effects of alcohol (72). In a validated model of hippocampal-dependent memory impairment and synaptic plasticity changes by predator stress, acute tianeptine can prevent the deleterious effects of stress on spatial memory, an effect that does not depend on corticosterone levels (73). Tianeptine also facilitates focused attention behavior in the cat in response to its environment or towards a significant stimulus (74). It was shown to exert improving effects on learning as well as on working memory and on reference memory in rodents (72) and to exhibit vigilance-enhancing effects in rats (75) and monkeys (76)...
Medical journal articles
News articles
National Institutes of Health, Vitamins, Alternative medicine, United Kingdom, Vitamin
Psychology, Attention, Dyslexia, Neuroscience, Psychiatry
Ethanol, Methamphetamine, L-dopa, Rubidium, Amphetamine
Amphetamine, Methamphetamine, Norepinephrine, Addiction, Food and Drug Administration
Metadata, Isbn, International Standard Book Number, Prolog, Unicode
Psychology, Psychiatry, Tourette syndrome, Anorexia nervosa, Compulsive hoarding
Amphetamine, Methamphetamine, Norepinephrine, Central nervous system, Tea
Carbon, Hydrogen, Nitrogen, Rubidium, PubChem
Psychology, Psychiatry, Caffeine, Acetylcholine, Methamphetamine