World Library  
Flag as Inappropriate
Email this Article

Numerical diffusion

Article Id: WHEBN0002785898
Reproduction Date:

Title: Numerical diffusion  
Author: World Heritage Encyclopedia
Language: English
Subject: Numerical resistivity, MacCormack method, Upwind scheme, Smoothed-particle hydrodynamics, Numerical differential equations
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Numerical diffusion

Numerical diffusion is a difficulty with computer simulations of continua (such as fluids) wherein the simulated medium exhibits a higher diffusivity than the true medium. This phenomenon can be particularly egregious when the system should not be diffusive at all, for example an ideal fluid acquiring some spurious viscosity in a numerical model.

Explanation

In Eulerian simulations, time and space are divided into a discrete grid and the continuous differential equations of motion (such as the Navier–Stokes equation) are discretized into finite-difference equations. The discrete equations are in general more diffusive than the original differential equations, so that the simulated system behaves differently than the intended physical system. The amount and character of the difference depends on the system being simulated and the type of discretization that is used. Most fluid dynamics or magnetohydrodynamic simulations seek to reduce numerical diffusion to the minimum possible, to achieve high fidelity — but under certain circumstances diffusion is added deliberately into the system to avoid singularities. For example, shock waves in fluids and current sheets in plasmas are in some approximations infinitely thin; this can cause difficulty for numerical codes. A simple way to avoid the difficulty is to add diffusion that smooths out the shock or current sheet. Higher order numerical methods (including spectral methods) tend to have less numerical diffusion than low order methods.

Example

As an example of numerical diffusion, consider an Eulerian simulation using an explicit time-advance of a drop of green dye diffusing through water. If the water is flowing diagonally through the simulation grid, then it is impossible to move the dye in the exact direction of the flow: at each time step the simulation can at best transfer some dye in each of the vertical and horizontal directions. After a few time steps, the dye will have spread out through the grid due to this sideways transfer. This numerical effect takes the form of an extra high diffusion rate.

When numerical diffusion applies to the components of the momentum vector, it is called numerical viscosity; when it applies to a magnetic field, it is called numerical resistivity.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.