World Library  
Flag as Inappropriate
Email this Article

Olig2

Article Id: WHEBN0014775592
Reproduction Date:

Title: Olig2  
Author: World Heritage Encyclopedia
Language: English
Subject: Neurogenins, NeuroD, EMX homeogene, HOXC8, HOXD8
Collection: Transcription Factors
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Olig2

Oligodendrocyte lineage transcription factor 2
Identifiers
Symbols  ; BHLHB1; OLIGO2; PRKCBP2; RACK17; bHLHe19
External IDs GeneCards:
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Oligodendrocyte transcription factor (OLIG2) is a basic helix-loop-helix (bHLH) transcription factor encoded by the Olig2 gene. The protein is of 329 amino acids in length, 32kDa in size and contains 1 basic helix-loop-helix DNA-binding domain.[1] It’s one of the three members of the bHLH family. The other two members are OLIG1 and OLIG3. The expression of OLIG2 is mostly restricted in central nervous system, where it acts as both an anti-neurigenic and a neurigenic factor at different stages of development. OLIG2 is well known for determining motor neuron and oligodendrocyte differentiation, as well as its role in sustaining replication in early development. It’s mainly involved in diseases such as brain tumor and Down syndrome.

Contents

  • Function 1
  • Clinical Significance 2
    • OLIG2 in Cancer 2.1
    • OLIG2 in Neural Diseases 2.2
  • References 3
  • Further reading 4
  • External links 5

Function

OLIG2 is mostly expressed in restricted domains of the brain and spinal cord ventricular zone which give rise to oligodendrocytes and specific types of neurons. In the spinal cord, the pMN region sequentially generates motor neurons and oligodendrocytes. During embryogenesis, OLIG2 first directs motor neuron fate by establishing a ventral domain of motor neuron progenitors and promoting neuronal differentiation. OLIG2 then switches to promoting the formation of oligodendrocyte precursors and oligodendrocyte differentiation at later stages of development. Apart from functioning as a neurogenic factor in specification and the differentiation of motor neurons and oligodendrocytes, OLIG2 also functions as an anti-neurogenic factor at early time points in pMN progenitors to sustain the cycling progenitor pool. This side of anti-neurogenicity of OLIG2 later plays a bigger role in malignancies like glioma.[2]

The role of phosphorylation has been highlighted recently to account for the multifaceted functions of OLIG2 in differentiation and proliferation. Studies showed that the phosphorylation state of OLIG2 at Ser30 determines the fate of cortical progenitor cells, in which cortical progenitor cells will either differentiate into astrocytes or remain as neuronal progenitors.[3] Phosphorylation at a triple serine motif (Ser10, Ser13 and Ser14) on the other hand was shown to regulate the proliferative function of OLIG2.[4] Another phosphorylation site Ser147 predicted by bioinformatics was found to regulate motor neuron development by regulating the binding between OLIG2 and NGN2.[5] Further, OLIG2 contains a ST box composed of a string of 12 contiguous serine and threonine residues at position Ser77-Ser88. It’s believed that phosphorylation at ST box is biologically functional,[6] yet the role of it still remains to be elucidated in vivo.[7]

Clinical Significance

OLIG2 in Cancer

OLIG2 is well recognized for its importance in cancer research, particularly in brain tumors and leukemia. OLIG2 is universally expressed in glioblastoma and other diffuse gliomas (astrocytomas, oligodendrogliomas and oligoastrocytomas), and is a useful positive diagnostic marker of these brain tumors.[8] In particular, OLIG2 is selectively expressed in a subgroup of glioma cells that are highly tumorigenic,[9] and is shown to be required for proliferation of human glioma cells implanted in the brain of severe combined immunodeficiency (SCID) mice.[10]

Though the molecular mechanism behind this tumorigenesis is not entirely clear, more studies have recently been published pinpointing diverse evidence and potential roles for OLIG2 in glioma progression. It’s believed that OLIG2 promotes neural stem cell and progenitor cell proliferation by opposing p53 pathway, which potentially contributes to glioma progression. OLIG2 has been shown to directly repress the p53 tumor-suppressor pathway effector p21WAF1/CIP1,[11] suppress p53 acetylation and impede the binding of p53 to several enhancer sites.[12] It’s further found that the phosphorylation of triple-serine motif in OLIG2 is present in several glioma lines and is more tumorigenic than the unphosphorylated status.[13] In a study using the U12-1 cell line for controlled expression of OLIG2, researchers showed that OLIG2 can suppress the proliferation of U12-1 by transactivating the p27Kip1 gene[14] and can inhibit the motility of the cell by activating RhoA.[15]

Besides glioma, OLIG2 is also involved in leukemogenesis. The Olig2 gene was actually first identified in a study in T-cell acute lymphoblastic leukemia, in which the expression of OLIG2 was found elevated after t(14;21)(q11.2;q22) chromosomal translocation.[16] The overexpression of OLIG2 was later shown present in malignancies beyond glioma and leukemia, such as breast cancer, melanoma and non-small cell lung carcinoma cell lines.[17] It also has been shown that up-regulation of OLIG2 together with LMO1 and Notch1 helps to provide proliferation signals.

OLIG2 in Neural Diseases

OLIG2 is also associated with Down syndrome, as it locates at chromosome 21 within or near the Down syndrome critical region on the long arm. This region is believed to contribute to the cognitive defects of Down syndrome. The substantial increase in the number of forebrain inhibitory neurons often observed in Ts65dn mouse (a murine model of trisomy 21) could lead to imbalance between excitation and inhibition and behavioral abnormalities. However, genetic reduction of OLIG2 and OLIG1 from three copies to two rescued the overproduction of interneurons, indicating the pivotal role of OLIG2 expression level in Down syndrome.[18] The association between OLIG2 and neural diseases (i.e. schizophrenia and Alzheimer’s disease) are under scrutiny, as several single nucleotide polymorphisms (SNPs) associated with these diseases in OLIG2 were identified by genome-wide association work.[19][20]

OLIG2 also plays a functional role in neural repair. Studies showed that the number of OLIG2-expressing cells increased in the lesion after cortical stab-wound injury, supporting the role for OLIG2 in reactive gliosis.[21] OLIG2 was also implicated in generating reactive astrocytes possibly in a transient re-expression manner, but the mechanisms are unclear.[22]

References

  1. ^ http://atlasgeneticsoncology.org/Genes/OLIG2ID236.html. 
  2. ^ Gaber, Z. B.; Novitch, B. G. (2011). "All the Embryo's a Stage, and Olig2 in Its Time Plays Many Parts". Neuron 69 (5): 833–835.  
  3. ^ Setoguchi, T.; Kondo, T. (2004). "Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation". The Journal of Cell Biology 166 (7): 963–968.  
  4. ^ Sun, Y.; Meijer, D. H.; Alberta, J. A.; Mehta, S.; Kane, M. F.; Tien, A. C.; Fu, H.; Petryniak, M. A.; Potter, G. B.; Liu, Z.; Powers, J. F.; Runquist, I.  S.; Rowitch, D. H.; Stiles, C. D. (2011). "Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors". Neuron 69 (5): 906–917.  
  5. ^ Li, H.; Paes De Faria, J.; Andrew, P.; Nitarska, J.; Richardson, W. D. (2011). "Phosphorylation Regulates OLIG2 Cofactor Choice and the Motor Neuron-Oligodendrocyte Fate Switch". Neuron 69 (5): 918–929.  
  6. ^ Huillard, E.; Ziercher, L.; Blond, O.; Wong, M.; Deloulme, J. C.; Souchelnytskyi, S.; Baudier, J.; Cochet, C.; Buchou, T. (2010). "Disruption of CK2  in Embryonic Neural Stem Cells Compromises Proliferation and Oligodendrogenesis in the Mouse Telencephalon". Molecular and Cellular Biology 30 (11): 2737–2749.  
  7. ^ Sun, Y.; Meijer, D. H.; Alberta, J. A.; Mehta, S.; Kane, M. F.; Tien, A. C.; Fu, H.; Petryniak, M. A.; Potter, G. B.; Liu, Z.; Powers, J. F.; Runquist, I.  S.; Rowitch, D. H.; Stiles, C. D. (2011). "Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors". Neuron 69 (5): 906–917.  
  8. ^ Ligon, K. L.; Alberta, J. A.; Kho, A. T.; Weiss, J.; Kwaan, M. R.; Nutt, C. L.; Louis, D. N.; Stiles, C. D.; Rowitch, D. H. (2004). "The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas". Journal of neuropathology and experimental neurology 63 (5): 499–509.  
  9. ^ Ligon, K. L.; Huillard, E.; Mehta, S.; Kesari, S.; Liu, H.; Alberta, J. A.; Bachoo, R. M.; Kane, M.; Louis, D. N.; Depinho, R. A.; Anderson, D. J.; Stiles, C. D.; Rowitch, D. H. (2007). "Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma". Neuron 53 (4): 503–517.  
  10. ^ Mehta, S.; Huillard, E.; Kesari, S.; Maire, C. L.; Golebiowski, D.; Harrington, E. P.; Alberta, J. A.; Kane, M. F.; Theisen, M.; Ligon, K. L.; Rowitch, D. H.; Stiles, C. D. (2011). "The Central Nervous System-Restricted Transcription Factor Olig2 Opposes p53 Responses to Genotoxic Damage in Neural Progenitors and Malignant Glioma". Cancer Cell 19 (3): 359–371.  
  11. ^ Ligon, K. L.; Huillard, E.; Mehta, S.; Kesari, S.; Liu, H.; Alberta, J. A.; Bachoo, R. M.; Kane, M.; Louis, D. N.; Depinho, R. A.; Anderson, D. J.; Stiles, C. D.; Rowitch, D. H. (2007). "Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma". Neuron 53 (4): 503–517.  
  12. ^ Mehta, S.; Huillard, E.; Kesari, S.; Maire, C. L.; Golebiowski, D.; Harrington, E. P.; Alberta, J. A.; Kane, M. F.; Theisen, M.; Ligon, K. L.; Rowitch, D. H.; Stiles, C. D. (2011). "The Central Nervous System-Restricted Transcription Factor Olig2 Opposes p53 Responses to Genotoxic Damage in Neural Progenitors and Malignant Glioma". Cancer Cell 19 (3): 359–371.  
  13. ^ Sun, Y.; Meijer, D. H.; Alberta, J. A.; Mehta, S.; Kane, M. F.; Tien, A. C.; Fu, H.; Petryniak, M. A.; Potter, G. B.; Liu, Z.; Powers, J. F.; Runquist, I.  S.; Rowitch, D. H.; Stiles, C. D. (2011). "Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors". Neuron 69 (5): 906–917.  
  14. ^ Tabu, K.; Ohnishi, A.; Sunden, Y.; Suzuki, T.; Tsuda, M.; Tanaka, S.; Sakai, T.; Nagashima, K.; Sawa, H. (2006). "A novel function of OLIG2 to suppress human glial tumor cell growth via p27Kip1 transactivation". Journal of Cell Science 119 (7): 1433–1441.  
  15. ^ Tabu, K.; Ohba, Y.; Suzuki, T.; Makino, Y.; Kimura, T.; Ohnishi, A.; Sakai, M.; Watanabe, T.; Tanaka, S.; Sawa, H. (2007). "Oligodendrocyte Lineage Transcription Factor 2 Inhibits the Motility of a Human Glial Tumor Cell Line by Activating RhoA". Molecular Cancer Research 5 (10): 1099–1109.  
  16. ^ Birdsall, B.; Griffiths, D. V.; Roberts, G. C.; Feeney, J.; Burgen, A. (1977). "1H nuclear magnetic resonance studies of Lactobacillus casei dihydrofolate reductase: Effects of substrate and inhibitor binding on the histidine residues". Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 196 (1124): 251–265.  
  17. ^ Lin, Y. -W.; Deveney, R.; Barbara, M.; Iscove, N. N.; Nimer, S. D.; Slape, C.; Aplan, P. D. (2005). "OLIG2 (BHLHB1), a bHLH Transcription Factor, Contributes to Leukemogenesis in Concert with LMO1". Cancer Research 65 (16): 7151–7158.  
  18. ^ Chakrabarti, L.; Best, T. K.; Cramer, N. P.; Carney, R. S. E.; Isaac, J. T. R.; Galdzicki, Z.; Haydar, T. F. (2010). "Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome". Nature Neuroscience 13 (8): 927–934.  
  19. ^ Georgieva, L.; Moskvina, V.; Peirce, T.; Norton, N.; Bray, N. J.; Jones, L.; Holmans, P.; MacGregor, S.; Zammit, S.; Wilkinson, J.; Williams, H.; Nikolov, I.; Williams, N.; Ivanov, D.; Davis, K. L.; Haroutunian, V.; Buxbaum, J. D.; Craddock, N.; Kirov, G.; Owen, M. J.; o’Donovan, M. C. (2006). "Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia". Proceedings of the National Academy of Sciences 103 (33): 12469–12474.  
  20. ^ Sims, R.; Hollingworth, P.; Moskvina, V.; Dowzell, K.; O'Donovan, M. C.; Powell, J.; Lovestone, S.; Brayne, C.; Rubinsztein, D.; Owen, M. J.; Williams, J.; Abraham, R. (2009). "Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease". Neuroscience Letters 461 (1): 54–59.  
  21. ^ Buffo, A.; Vosko, M. R.; Ertürk, D.; Hamann, G. F.; Jucker, M.; Rowitch, D.; Götz, M. (2005). "Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair". Proceedings of the National Academy of Sciences 102 (50): 18183–18188.  
  22. ^ Buffo, A.; Rite, I.; Tripathi, P.; Lepier, A.; Colak, D.; Horn, A. -P.; Mori, T.; Gotz, M. (2008). "Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain". Proceedings of the National Academy of Sciences 105 (9): 3581–3586.  

Further reading

  • Hattori M, Fujiyama A, Taylor TD, et al. (2000). "The DNA sequence of human chromosome 21.". Nature 405 (6784): 311–9.  
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903.  
  • Sun T, Dong H, Wu L, et al. (2003). "Cross-repressive interaction of the Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex.". J. Neurosci. 23 (29): 9547–56.  
  • Fukuda S, Kondo T, Takebayashi H, Taga T (2004). "Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway.". Cell Death Differ. 11 (2): 196–202.  
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5.  
  • Ligon KL, Alberta JA, Kho AT, et al. (2004). "The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas.". J. Neuropathol. Exp. Neurol. 63 (5): 499–509.  
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7.  
  • Hori Y, Gu X, Xie X, Kim SK (2006). "Differentiation of insulin-producing cells from human neural progenitor cells.". PLoS Med. 2 (4): e103.  
  • Lin YW, Deveney R, Barbara M, et al. (2005). "OLIG2 (BHLHB1), a bHLH transcription factor, contributes to leukemogenesis in concert with LMO1.". Cancer Res. 65 (16): 7151–8.  
  • Jakovcevski I, Zecevic N (2006). "Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS.". J. Neurosci. 25 (44): 10064–73.  
  • Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55–65.  
  • Sun T, Hafler BP, Kaing S, et al. (2006). "Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube.". Dev. Biol. 292 (1): 152–64.  
  • Tabu K, Ohnishi A, Sunden Y, et al. (2006). "A novel function of OLIG2 to suppress human glial tumor cell growth via p27Kip1 transactivation.". J. Cell. Sci. 119 (Pt 7): 1433–41.  
  • Wissmüller S, Kosian T, Wolf M, et al. (2006). "The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors.". Nucleic Acids Res. 34 (6): 1735–44.  
  • Ligon KL, Kesari S, Kitada M, et al. (2006). "Development of NG2 neural progenitor cells requires Olig gene function.". Proc. Natl. Acad. Sci. U.S.A. 103 (20): 7853–8.  
  • Georgieva L, Moskvina V, Peirce T, et al. (2006). "Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia.". Proc. Natl. Acad. Sci. U.S.A. 103 (33): 12469–74.  
  • Ruf N, Martelli M, Weschke B, Uhlenberg B (2007). "Oligodendroglial transcription factor (OLIG1 and OLIG2) mutations are not associated with Pelizaeus-Merzbacher-like leukodystrophy.". Am. J. Med. Genet. B Neuropsychiatr. Genet. 144 (3): 365–6.  

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.