World Library  
Flag as Inappropriate
Email this Article

Ocelli

Article Id: WHEBN0002150405
Reproduction Date:

Title: Ocelli  
Author: World Heritage Encyclopedia
Language: English
Subject: Echinoderm, List of rock textures, Convolutidae, Ecnomidae
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Ocelli

For eye-like markings, see eyespot (mimicry).
"Ocellus" redirects here. For the Celtic god, see Ocelus.


A simple eye (sometimes called a pigment pit[1][2]) refers to a type of eye form or optical arrangement that contains a single lens. A "simple eye" is so called in distinction from a multi-lensed "compound eye", and is not necessarily at all simple in the usual sense of the word. The eyes of humans and large animals, and camera lenses are classed as "simple" because in both cases a single lens collects and focuses light onto the retina or film. Many insects have compound eyes consisting of multiple lenses (up to tens of thousands), each focusing light onto a small number of retinula cells.

The structure of an animal's eye is determined by the environment in which it lives, and the behavioural tasks it must fulfill to survive. Arthropods differ widely in the habitats in which they live, as well as their visual requirements for finding food or conspecifics, and avoiding predators. Consequently, an enormous variety of eye designs are found in arthropods: nature has repeatedly developed novel solutions to overcome visual problems or limitations (for a review of arthropod visual systems see Warrant, 2006).[3]

Ocelli or eye spots

Some jellyfish, sea stars, and flatworms bear the simplest eyes, pigment spot ocelli, which have pigment distributed randomly and which have no additional structures such as a cornea and lens. The apparent eye color in these animals is therefore red or black.[4] However, other cnidaria have more complex eyes, including those of Cubomedusae which have distinct retina, lens, and cornea.[5]

Many snails and slugs (gastropod mollusks) also have ocelli, either at the tips or at the bases of the tentacles. However, some other gastropods, such as the Strombidae, have much more sophisticated eyes. Giant clams (Tridacna) have ocelli that allow light to penetrate their mantles.[6]

Simple eyes in arthropods

Spider eyes


Spiders do not have compound eyes, but instead have several pairs of simple eyes with each pair adapted for a specific task or tasks. The principal and secondary eyes in spiders are arranged in four or more pairs. Only the principal eyes have moveable retinas. The secondary eyes have a reflector at the back of the eyes. The light-sensitive part of the receptor cells is next to this, so they get direct and reflected light. In hunting or jumping spiders, for example, a forward-facing pair possesses the best resolution (and even telescopic components) to see the (often small) prey at a large distance. Night-hunting spiders' eyes are very sensitive in low light levels with a large aperture, f/0.58.[7]

Dorsal ocelli

The term "ocellus" (plural ocelli) is derived from the Latin oculus (eye), and literally means "little eye". Two distinct ocellus types exist:[8] dorsal ocelli (or simply "ocelli"), found in most insects, and lateral ocelli (or stemmata), which are found in the larvae of some insect orders. They are structurally and functionally very different. Simple eyes of other animals, e.g. cnidarians, may also be referred to as ocelli, but again the structure and anatomy of these eyes is quite distinct from those of the dorsal ocelli of insects.

Dorsal ocelli are light-sensitive organs found on the dorsal (top-most) surface or frontal surface of the head of many insects, e.g. Hymenoptera (bees, ants, wasps, sawflies), Diptera (flies), Odonata (dragonflies, damselflies) and Orthoptera (grasshoppers, locusts). The ocelli coexist with the compound eyes, thus most insects possess two anatomically separate and functionally different visual pathways.

The number, forms, and functions of the dorsal ocelli vary markedly throughout insect orders. They tend to be larger and more strongly expressed in flying insects (particularly bees, wasps, dragonflies and locusts), where they are typically found as a triplet. Two lateral ocelli are directed to the left and right of the head, respectively, while a central (median) ocellus is directed frontally. In some terrestrial insects (e.g. some ants and cockroaches), only two lateral ocelli are present: the median ocellus is absent. The unfortunately labelled "lateral ocelli" here refers to the sideways-facing position of the ocelli, which are of the dorsal type. They should not be confused with the lateral ocelli of some insect larvae (see stemmata).

A dorsal ocellus consists of a lens element (cornea) and a layer of photoreceptors (rod cells). The ocellar lens may be strongly curved (e.g. bees, locusts, dragonflies) or flat (e.g. cockroaches). The photoreceptor layer may (e.g. locusts) or may not (e.g. blowflies, dragonflies) be separated from the lens by a clear zone (vitreous humour). The number of photoreceptors also varies widely, but may number in the hundreds or thousands for well-developed ocelli.

Two somewhat unusual features of the ocelli are particularly notable and generally well conserved between insect orders.

  1. The refractive power of the lens is not typically sufficient to form an image on the photoreceptor layer.
  2. Dorsal ocelli ubiquitously have massive convergence ratios from first-order (photoreceptor) to second-order neurons.

These two factors have led to the conclusion that the dorsal ocelli are incapable of perceiving form, and are thus solely suitable for light-metering functions. Given the large aperture and low f-number of the lens, as well as high convergence ratios and synaptic gains, the ocelli are generally considered to be far more sensitive to light than the compound eyes. Additionally, given the relatively simple neural arrangement of the eye (small number of synapses between detector and effector), as well as the extremely large diameter of some ocellar interneurons (often the largest diameter neurons in the animal's nervous system), the ocelli are typically considered to be "faster" than the compound eyes.[9]

One common theory of ocellar function in flying insects holds that they are used to assist in maintaining flight stability. Given their underfocused nature, wide fields of view, and high light-collecting ability, the ocelli are superbly adapted for measuring changes in the perceived brightness of the external world as an insect rolls or pitches around its body axis during flight. Corrective flight responses to light have been demonstrated in locusts[10] and dragonflies[11] in tethered flight. Other theories of ocellar function have ranged from roles as light adaptors or global excitatory organs, to polarization sensors and circadian entrainers.

Recent studies have shown the ocelli of some insects (most notably the dragonfly, but also some wasps) are capable of form vision, as the ocellar lens forms an image within, or close to, the photoreceptor layer.[3][12] In dragonflies it has been demonstrated that the receptive fields of both the photoreceptors[13] and the second-order neurons[14] can be quite restricted. Further research has demonstrated these eyes not only resolve spatial details of the world, but also perceive motion.[15] Second-order neurons in the dragonfly median ocellus respond more strongly to upwards-moving bars and gratings than to downwards-moving bars and gratings, but this effect is only present when ultraviolet light is used in the stimulus; when ultraviolet light is absent, no directional response is observed. Dragonfly ocelli are especially highly developed and specialised visual organs, which may support the exceptional acrobatic abilities of these animals.

Research on the ocelli is of high interest to designers of small unmanned aerial vehicles. Designers of these craft face many of the same challenges that insects face in maintaining stability in a three-dimensional world. Engineers are increasingly taking inspiration from insects to overcome these challenges.[16]

Stemmata

Stemmata (singular stemma, also referred to as lateral ocelli) are the only eyes of the holometabolous larvae and certain adults of several orders of insects (fleas, springtails, and Thysanura. Strepsiptera have clusters of simple eyes). Behind each lens lies a single cluster of photoreceptor cells, termed a retinula. The lens is biconvex, and the body contains a vitreous or crystalline core. They may represent simplified compound eyes (stemmata are simple eyes), reflected by their lateral position on the head. They are possessed by myriapods and some insect larvae.[8]

Genetic controls

A number of genetic pathways are responsible for the occurrence and positioning of the ocelli. The gene orthodenticle is allelic to ocelliless, a mutation that stops ocelli from being produced.[17] In Drosophila, the rhodopsin Rh2 is only expressed in simple eyes.[18]

While (in Drosophila at least) the genes eyeless and dachshund are both expressed in the compound eye but not the simple eye, no reported 'developmental' genes are uniquely expressed in the simple eye.[19]

Epidermal growth factor receptor (Egfr) promotes the expression of orthodenticle [and possibly eyes absent (Eya)] and as such is essential for simple eye formation.[19]

See also

References

Further reading

External links

  • John R. Meyer, Photoreceptors

Template:Vision in animals

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.