#jsDisabledContent { display:none; } My Account | Register | Help

# Octagonal tiling

Article Id: WHEBN0027990286
Reproduction Date:

 Title: Octagonal tiling Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Octagonal tiling

Octagonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex figure 8.8.8
Schläfli symbol {8,3}
t{4,8}
Wythoff symbol 3 | 8 2
2 8 | 4
4 4 4 |
Coxeter diagram

Symmetry group [8,3], (*832)
[8,4], (*842)
[(4,4,4)], (*444)
Dual Order-8 triangular tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the octagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {8,3}, having three regular octagons around each vertex.

## Contents

• Uniform colorings 1
• Related polyhedra and tilings 2
• References 4

## Uniform colorings

Like the hexagonal tiling of the Euclidean plane, there are 3 uniform colorings of this hyperbolic tiling. The dual tiling V8.8.8 represents the fundamental domains of [(4,4,4)] symmetry.
Regular Truncation Omnitruncation

{8,3}

t1,2{8,4}

t0,1,2(4,4,4)
=
 {3,8} = = f0,1,2(4,4,4) =

## Related polyhedra and tilings

This tiling is topologically part of sequence of regular polyhedra and tilings with Schläfli symbol {n,3}.
Spherical
Polyhedra
Polyhedra Euclidean Hyperbolic tilings

{2,3}

{3,3}

{4,3}

{5,3}

{6,3}

{7,3}

{8,3}
...
(∞,3}
And also is topologically part of sequence of regular tilings with Schläfli symbol {8,n}.
 {8,2} {8,3} {8,4} {8,5} {8,6} {8,7} {8,8} ... {8,∞}

From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 10 forms.

Uniform octagonal/triangular tilings
Symmetry: [8,3], (*832) [8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}

or

or

Uniform duals
V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8 V(3.4)3 V8.6.6 V35.4
Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries)
(And [(∞,4,∞,4)] (*4242) index 4 subsymmetry)

=

=
=

=

=
=

=

=

=
=

=
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
V84 V4.16.16 V(4.8)2 V8.8.8 V48 V4.4.4.8 V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)

=

=

=

=

=

=
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
V(4.4)4 V3.(3.8)2 V(4.4.4)2 V(3.4)3 V88 V4.44 V3.3.4.3.8
Uniform (4,4,4) tilings
Symmetry: [(4,4,4)], (*444) [(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)
t0{(4,4,4)} t0,1{(4,4,4)} t1{(4,4,4)} t1,2{(4,4,4)} t2{(4,4,4)} t0,2{(4,4,4)} t0,1,2{(4,4,4)} s{(4,4,4)} h{(4,4,4)} hr{(4,4,4)}
Uniform duals
V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V88 V(4,4)3