World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000582473
Reproduction Date:

Title: Oogenesis  
Author: World Heritage Encyclopedia
Language: English
Subject: Gonocyte, Egg cell, Gametogenesis, Female reproductive system, Folliculogenesis
Collection: Developmental Biology, Genetics
Publisher: World Heritage Encyclopedia


Anatomical terminology

Oogenesis, ovogenesis, or oögenesis [1] is the creation of an ovum (egg cell). It is the female form of gametogenesis; the male equivalent is spermatogenesis. It involves the development of the various stages of the immature ovum.


  • Oogenesis in mammals 1
    • The creation of oogonia 1.1
  • Human oogenesis 2
    • Oocytogenesis 2.1
      • Number of primary oocytes 2.1.1
    • Ootidogenesis 2.2
      • Meiosis I 2.2.1
      • Meiosis II 2.2.2
      • Folliculogenesis 2.2.3
    • Maturation into ovum 2.3
    • In vitro maturation 2.4
  • Oogenesis in non-mammals 3
  • See also 4
  • References 5
  • External links 6

Oogenesis in mammals

Diagram showing the reduction in number of the chromosomes in the process of maturation of the ovum. (In mammals, the first polar body normally disintegrates before dividing, so only two polar bodies are produced.)

In mammals, the first part of oogenesis starts in the germinal epithelium, which gives rise to the development of ovarian follicles, the functional unit of the ovary.

Oogenesis consists of several sub-processes: oocytogenesis, ootidogenesis, and finally maturation to form an ovum (oogenesis proper). Folliculogenesis is a separate sub-process that accompanies and supports all three oogenetic sub-processes.

Cell type ploidy Process Process completion
Oogonium diploid Oocytogenesis (mitosis) third trimester (forming oocytes)
primary Oocyte diploid Ootidogenesis (meiosis 1) (Folliculogenesis) Dictyate in prophase I until puberty
secondary Oocyte haploid Ootidogenesis (meiosis 2) Halted in metaphase II until fertilization
Ovum haploid

Oogonium —(Oocytogenesis)—> Primary Oocyte —(Meiosis I)—> First Polar Body (Discarded afterward) + Secondary oocyte —(Meiosis II)—> Second Polar Body (Discarded afterward) + Ovum

It should be noted that oocyte meiosis, important to all animal life cycles yet unlike all other instances of animal cell division, occurs completely without the aid of spindle-coordinating centrosomes.[2][3]

The creation of oogonia

The creation of oogonia traditionally doesn't belong to oogenesis proper, but, instead, to the common process of gametogenesis, which, in the female human, begins with the processes of folliculogenesis, oocytogenesis, and ootidogenesis.

Human oogenesis

At the start of the menstrual cycle, some 12-20 primary follicles begin to develop under the influence of elevated FSH to form secondary follicles. The primary follicles have formed from primordial follicles, which developed in the ovary at around 10–30 weeks after conception. By around day 9 of the cycle, only one healthy secondary follicle remains, with the rest having undergone ovarian follicle atresia. The remaining follicle is called the dominant follicle and is responsible for producing large amounts of estradiol during the late follicular phase. Estradiol production depends upon co-operation between the theca and granulosa cells. On day 14 of the cycle, an LH surge occurs, which itself is triggered by the positive feedback of estradiol. This causes the secondary follicle to develop into a tertiary follicle, which then ovulates some 24–36 hours later. An important event in the development of the tertiary follicle occurs when the primary oocyte completes the first meiotic division, resulting in the formation of a polar body and a secondary oocyte. The empty follicle then forms a corpus luteum, which later releases the hormone progesterone.


Oogenesis starts with the process of developing oogonia, which occurs via the transformation of primordial follicles into primary oocytes, a process called oocytogenesis.[4] Oocytogenesis is complete either before or shortly after birth.

Number of primary oocytes

It is commonly believed that, when oocytogenesis is complete, no additional primary oocytes are created, in contrast to the male process of spermatogenesis, where gametocytes are continuously created. In other words, primary oocytes reach their maximum development at ~20[5] weeks of gestational age, when approximately seven million primary oocytes have been created; however, at birth, this number has already been reduced to approximately 1-2 million.

Recently, however, two publications have challenged the belief that a finite number of oocytes are set around the time of birth.[6][7] The renewal of ovarian follicles from germline stem cells (originating from bone marrow and peripheral blood) has been reported in the postnatal mouse ovary.

Due to the revolutionary nature of these claims, further experiments are required to determine the true dynamics of small follicle formation.


The succeeding phase of ootidogenesis occurs when the primary oocyte develops into an ootid. This is achieved by the process of meiosis. In fact, a primary oocyte is, by its biological definition, a cell whose primary function is to divide by the process of meiosis.[8]

However, although this process begins at prenatal age, it stops at prophase I. In late fetal life, all oocytes, still primary oocytes, have halted at this stage of development, called the dictyate. After menarche, these cells then continue to develop, although only a few do so every menstrual cycle.

Meiosis I

Meiosis I of ootidogenesis begins during embryonic development, but halts in the diplotene stage of prophase I until puberty. The mouse oocyte in the dictyate (prolonged diplotene) stage actively repairs DNA damage, whereas DNA repair is not detectable in the pre-dictyate (leptotene, zygotene and pachytene) stages of meiosis.[9] For those primary oocytes that continue to develop in each menstrual cycle, however, synapsis occurs and tetrads form, enabling chromosomal crossover to occur. As a result of meiosis I, the primary oocyte has now developed into the secondary oocyte and the first polar body.

Meiosis II

Immediately after meiosis I, the haploid secondary oocyte initiates meiosis II. However, this process is also halted at the metaphase II stage until fertilization, if such should ever occur. When meiosis II has completed, an ootid and another polar body have now been created.


Synchronously with ootidogenesis, the ovarian follicle surrounding the ootid has developed from a primordial follicle to a preovulatory one.

Maturation into ovum

All 3 polar bodies disintegrate at the end of Meiosis II, leaving only the ootid, which then eventually undergoes maturation into a mature ovum.

The function of forming polar bodies is to discard the extra haploid sets of chromosomes that have resulted as a consequence of meiosis.

In vitro maturation

In vitro maturation (IVM) is the technique of letting ovarian follicles mature in vitro. It can potentially be performed before an IVF. In such cases, ovarian hyperstimulation isn't essential. Rather, oocytes can mature outside the body prior to IVF. Hence, no (or at least a lower dose of) gonadotropins have to be injected in the body.[10] However, there still isn't enough evidence to prove the effectiveness and security of the technique.[10]

Oogenesis in non-mammals

Many protists produce egg cells in structures termed archegonia. Some algae and the oomycetes produce eggs in oogonia. In the brown alga Fucus, all four egg cells survive oogenesis, which is an exception to the rule that generally only one product of female meiosis survives to maturity.

In plants, oogenesis occurs inside the female gametophyte via mitosis. In many plants such as bryophytes, ferns, and gymnosperms, egg cells are formed in archegonia. In flowering plants, the female gametophyte has been reduced to an eight-celled embryo sac within the ovule inside the ovary of the flower. Oogenesis occurs within the embryo sac and leads to the formation of a single egg cell per ovule.

In ascaris, the oocyte does not even begin meiosis until the sperm touches it, in contrast to mammals, where meiosis is completed in the estrus cycle.

See also


  1. ^ Merriam-Webster Online Dictionary Definition: Oogenesis
  2. ^ Szollosi D, Calarco P, Donahue RP (1972). Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11(2):521-541. PMID 5076360
  3. ^ Manandhar G, Schatten H, Sutovsky P(2005). Centrosome reduction during gametogenesis and its significance. Biol Reprod 72(1):2-13. Review. PMID 15385423
  4. ^ NCBI - The saga of the germ line
  5. ^
  6. ^
  7. ^
  8. ^ Biochem
  9. ^ Guli CL, Smyth DR (1988). UV-induced DNA repair is not detectable in pre-dictyate oocytes of the mouse. Mutat Res 208(2):115-119. PMID 3380109
  10. ^ a b Vejledning om kunstig befrugtning 2006 (Danish)
  • Manandhar G, Schatten H and Sutovsky P (2005). Centrosome reduction during gametogenesis and its significance. Biol Reprod, 72(1)2-13.

External links

  • Reproductive Physiology
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.