World Library  
Flag as Inappropriate
Email this Article

Oxygen cycle

Article Id: WHEBN0000583598
Reproduction Date:

Title: Oxygen cycle  
Author: World Heritage Encyclopedia
Language: English
Subject: Biogeochemical cycle, Dioxygen in biological reactions, Nutrient cycle, Chemical oceanography, Mercury cycle
Collection: Biogeochemical Cycle, Chemical Oceanography, Ecology, Photosynthesis
Publisher: World Heritage Encyclopedia

Oxygen cycle

The oxygen cycle

The oxygen cycle is the biogeochemical cycle that describes the movement of oxygen within its three main reservoirs: the atmosphere (air), the total content of biological matter within the biosphere (the global sum of all ecosystems), and the lithosphere (Earth's crust). Failures in the oxygen cycle within the hydrosphere (the combined mass of water found on, under, and over the surface of planet Earth) can result in the development of hypoxic zones. The main driving factor of the oxygen cycle is photosynthesis, which is responsible for the modern Earth's atmosphere and life on earth (see the Great Oxygenation Event).


  • Reservoirs 1
  • Capacities and fluxes 2
  • Ozone 3
  • References 4


By far the largest reservoir of Earth's oxygen is within the silicate and oxide minerals of the crust and mantle (99.5%). Only a small portion has been released as free oxygen to the biosphere (0.01%) and atmosphere (0.36%). The main source of atmospheric free oxygen is photosynthesis, which produces sugars and free oxygen from carbon dioxide and water:

\mathrm{6 \ CO_2 + 6H_2O + energy \longrightarrow C_6H_{12}O_6 + 6 \ O_2}

Photosynthesizing organisms include the plant life of the land areas as well as the phytoplankton of the oceans. The tiny marine cyanobacterium Prochlorococcus was discovered in 1986 and accounts for more than half of the photosynthesis of the open ocean.[1]

An additional source of atmospheric free oxygen comes from photolysis, whereby high-energy ultraviolet radiation breaks down atmospheric water and nitrous oxide into component atoms. The free H and N atoms escape into space, leaving O2 in the atmosphere:

\mathrm{2 \ H_2O + energy \longrightarrow 4 \ H + O_2}
\mathrm{2 \ N_2O + energy \longrightarrow 4 \ N + O_2}

The main way free oxygen is lost from the atmosphere is via respiration and decay, mechanisms in which animal life and bacteria consume oxygen and release carbon dioxide.

The lithosphere also consumes free oxygen by chemical weathering and surface reactions. An example of surface weathering chemistry is formation of iron oxides (rust):

\mathrm{4 \ FeO + O_2 \longrightarrow 2 \ Fe_2O_3}

Oxygen is also cycled between the biosphere and lithosphere. Marine organisms in the biosphere create limestone sedimentary rock of the lithosphere. Weathering processes initiated by organisms can also free oxygen from the lithosphere. Plants and animals extract nutrient minerals from rocks and release oxygen in the process.

Capacities and fluxes

The following tables offer estimates of oxygen cycle reservoir capacities and fluxes. These numbers are based primarily on estimates from (Walker, J. C. G.[2]):

Table 1: Major reservoirs involved in the oxygen cycle

Reservoir Capacity
(kg O2)
Flux in/out
(kg O2 per year)
Residence time
Atmosphere 1.4×1018 3×1014 4500
Biosphere 1.6×1016 3×1014 50
Lithosphere 2.9×1020 6×1011 500000000

Table 2: Annual gain and loss of atmospheric oxygen (Units of 1010 kg O2 per year)

Photosynthesis (land)
Photosynthesis (ocean)
Photolysis of N2O
Photolysis of H2O
Total gains ~ 30,000
Losses - respiration and decay
Aerobic respiration
Microbial oxidation
Combustion of fossil fuel (anthropogenic)
Photochemical oxidation
Fixation of N2 by lightning
Fixation of N2 by industry (anthropogenic)
Oxidation of volcanic gases
Losses - weathering
Chemical weathering
Surface reaction of O3
Total losses ~ 30,000


The presence of atmospheric oxygen has led to the formation of ozone (O3) and the ozone layer within the stratosphere:

\mathrm{O_2 + uv~light \longrightarrow 2~O}\qquad(\lambda \lesssim 200~\text{nm})
\mathrm{O + O_2 \longrightarrow O_3}

The ozone layer is extremely important to modern life as it absorbs harmful ultraviolet radiation:

\mathrm{O_3 + uv~light \longrightarrow O_2 + O}\qquad(\lambda \lesssim 300~\text{nm})


  1. ^ Steve Nadis, The Cells That Rule the Seas, Scientific American, Nov. 2003 [2]
  2. ^ Walker, J. C. G. (1980) The oxygen cycle in the natural environment and the biogeochemical cycles, Springer-Verlag, Berlin, Federal Republic of Germany (DEU).
  • Cloud, P. and Gibor, A. 1970, The oxygen cycle, Scientific American, September, S. 110-123
  • Fasullo, J., Substitute Lectures for ATOC 3600: Principles of Climate, Lectures on the global oxygen cycle,
  • Morris, R.M., OXYSPHERE - A Beginners' Guide to the Biogeochemical Cycling of Atmospheric Oxygen,
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.