World Library  
Flag as Inappropriate
Email this Article


Palouse is located in United States
Location in the United States

The Palouse ( ) is a region of the northwestern United States, encompassing parts of southeastern Washington, north central Idaho and, in some definitions, extending south into northeast Oregon. It is a major agricultural area, primarily producing wheat and legumes. Situated about 160 miles (260 km) north of the Oregon Trail, the region experienced rapid growth in the late 19th century, and at one time, the population of the Palouse surpassed even that of the Puget Sound area as the most populous region of the state.[1] The region is home to two land grant universities, the University of Idaho in Moscow and Washington State University in Pullman. Located just eight miles (13 km) apart, both schools opened in the early 1890s.

Palouse hills
northeast of Walla Walla


  • Geography and history 1
  • Geology 2
  • Farming 3
  • Environment 4
  • Fires 5
  • In fiction 6
  • See also 7
  • Notes 8
  • References 9
  • External links 10

Geography and history

Palouse hills south of the UI Arboretum in Moscow, Idaho

The origin of the name "Palouse" is unclear. One theory is that the name of the Palus tribe (spelled in early accounts variously Palus, Palloatpallah, Pelusha, et cetera) was converted by French-Canadian fur traders to the more familiar French word pelouse, meaning "land with short and thick grass" or "lawn." Over time, the spelling changed to Palouse.[2] Another theory is that the name was in the first place a French word, describing the area which was then applied to the indigenous people inhabiting it.

Traditionally, the Palouse region was defined as the fertile hills and prairies north of the Snake River, which separated it from Walla Walla County, and north of the Clearwater River, which separated it from the Camas Prairie, extending north along the Washington and Idaho border, south of Spokane, centered on the Palouse River. This region underwent a settlement and wheat-growing boom during the 1880s, part of a larger process of growing wheat in southeast Washington, originally pioneered in the Walla Walla County south of the Snake River.[3]

While this definition of the Palouse remains common today, sometimes the term is used to refer to the entire wheat-growing region, including the Walla Walla County, the Camas Prairie of Idaho, the Big Bend region of the central World Wide Fund for Nature, who define the Palouse Grasslands ecoregion broadly.[4]

The community of Palouse, Washington, is located in Whitman County, about 7 miles (11 km) west of Potlach, Idaho.

Nevertheless, the traditional definition of the Palouse region is distinct from the older Walla Walla region south of the Snake River, where dryland farming of wheat was first proved viable in the region in the 1860s. During the 1870s, the Walla Walla region was rapidly converted to farmland, while the initial experiments in growing wheat began in the Palouse region, which previously had been the domain of cattle and sheep ranching. When those trials proved more than successful, a minor land rush quickly filled the Palouse region with farmers during the 1880s. The simultaneous proliferation of railroads only increased the rapid settlement of the Palouse. By 1890 nearly all the Palouse lands had been taken up and converted to wheat farming.[5]

Unlike the Walla Walla Country, which was solidly anchored on the city of Walla Walla, the Palouse region saw the rise of at least four centers, all within several miles of each other: Colfax (the oldest), Palouse, Pullman, and on the Idaho side, Moscow. These four centers, along with at least ten lesser ones, resulted in a diffused urban pattern, relative to the centralized Walla Walla county.[6]

Cities along the borders of the Palouse, in some definitions included within the Palouse region, include Lewiston, Idaho, serving the Camas Prairie farmlands, Ritzville, serving the eastern edge of the Big Bend Country, and Spokane, the major urban hub of the entire region. So dominant was Spokane's position, it became known as the capital of the Inland Empire, including all the wheat producing regions, the local mining districts, and lumber producing forests. Spokane also served as the main railroad and transportation hub of the entire region.

By 1910, although local terms like Palouse, Walla Walla Country, Big Bend, Umatilla Country, and Camas Prairie, continued to be common, many people of the region began to regard themselves as living in the Inland Empire, the Wheat Belt, the Columbia Basin, or simply Eastern Washington, Oregon, or North Idaho.[7]


The Palouse from
Steptoe Butte, Washington

The peculiar and picturesque silt dunes which characterize the Palouse Prairie were formed during the ice ages (Alt and Hyndman 1989). Blown in from the glacial outwash plains to the west and south, the Palouse hills consist of more or less random humps and hollows. The steepest slopes, which may reach 50% slope, face the northeast. The highly productive loess ranges from 5 to 130 cm (2 to 51 in) deep.[8] Large areas of level land are rare.

Higher elevations bordering the prairies such as the Palouse Range support an often dense coniferous forest. Moscow Mountain is the tallest of the range, 4,983 feet (1,519 m) above sea level; it is located eight miles (13 km) northeast of the city of Moscow.



  • Moscow-Pullman Daily News
  • Daily Evergreen - WSU student newspaper
  • Argonaut - UI student newspaper
  • "Palouse grasslands (World Wildlife Fund)". Terrestrial Ecoregions. World Wildlife Fund. 
  • Dept. of Horticulture and Landscape Architecture, Washington State University
  • Palouse grasslands images at (slow modem version)
  • Palouse River, The Columbia Gazetteer of North America. 2000.
  • National Lentil Festival
  • The Appaloosa Museum
  • Photograph America: The Palouse, Washington
  • The Luminous Landscape: The Palouse

News from Palouse

External links

  • Chapter 10: Additional Figures - Biodiversity and Land-use History of the Palouse Bioregion: Pre-European to Present - Sisk, T.D., editor. 1998. Perspectives on the land-use history of North America: a context for understanding our changing environment. U.S. Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR 1998-0003 (Revised September 1999).
  • Alt, D.D., and W. D. Hyndman. 1989. Roadside geology of Idaho. Mountain Press Publishing Company, Id. 403 pp.
  • Meinig, D.W. 1968. The Great Columbia Plains: A Historical Geography, 1805-1910. University of Seattle Press, Seattle (Revised 1995). ISBN 0-295-97485-0.
  • Morgan, P., S.C. Bunting, A.E. Black, T. Merrill, and S. Barrett. 1996. Fire regimes in the Interior Columbia River Basin: past and present. Final Report, RJVA-INT-94913. Intermountain Fire Sciences Laboratory, USDA Forest Service, Intermountain Research Station, Missoula, Mont.
  • Noss, R.F., E.T. LaRoe III, and J.M. Scott. 1995. Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. U.S. National Biological Service. Biological Report 28.
  • Ratti, J.T., and J.M. Scott. 1991. Agricultural impacts on wildlife: problem review and restoration needs. The Environmental Professional 13:263-274.
  • Tisdale, E.W. 1986. Canyon grasslands and associated shrublands of west-central Idaho and adjacent areas. Bulletin No. 40. Forestry, Wildlife and Range Experiment Station, University of Idaho, Moscow.
  • Victor, E. 1935. Some effects of cultivation upon stream history and upon the topography of the Palouse region. Northwest Science 9(3):18-19.


  1. ^ Meinig, pg. 248. The 1880 census recorded 3,588 people living in Walla Walla and 3,533 in Seattle.
  2. ^ Phillips, James W. (1971). Washington State Place Names. University of Washington Press.  
  3. ^ Meinig, p. 467.
  4. ^ "Palouse grasslands". Terrestrial Ecoregions. World Wildlife Fund. 
  5. ^ Meinig, pg. 510.
  6. ^ Meinig, pg. 333.
  7. ^ Meinig, pg. 406.
  8. ^ a b c d Williams, K.R. 1991. Hills of gold: a history of wheat production technologies in the Palouse region of Washington and Idaho. Ph.D. dissertation, Washington State University, Pullman.
  9. ^ St. George, Donna (1997-09-24). "National Origins: Washington-Idaho Border; America's Golden Land Of Lentils".  
  10. ^


See also

In fiction

While there is some debate over how frequently the Palouse prairie burned historically, there is consensus that Nez Perce burned the Palouse and Camas Prairies to encourage growth of Camas (Morgan, pers. Comm); but there is little historical record to solve the mystery. European-American settlers used fire to clear land for settlement and grazing until the 1930s. Since then, forest fires have become less common. One result has been increasing tree density on forested lands and encroachment of shrubs and trees into previously open areas. Consequently, when fires occur in the forest, they are more likely to result in mixed severity or stand replacing events.


With the adoption of no-till farming practices in the Palouse region in the early 2000s,[10] the negative environmental impact of agriculture has visibly decreased.

The impacts of domestic grazers on the grasslands of the Palouse and Camas Prairies was transitory because much of the areas were rapidly converted to agriculture. However, the canyonlands of the Snake and Clearwater rivers and their tributaries with their much shallower soils, steep topography, and hotter, drier climate, were largely unsuitable for crop production and were consequently used for a much longer period by grazing domestic animals (Tisdale 1986). There, intense grazing and other disturbances have resulted in irreversible changes with the native grasses largely replaced by annual grasses of the genus Bromus and noxious weeds, particularly from the genus Centaurea. The highly competitive plants of both of these genera evolved under similar climatic regimes in Eurasia and were introduced to the U.S. in the late 19th century.

A farm in Whitman County, Washington

Since 1900, 94% of the grasslands and 97% of the wetlands in the Palouse ecoregion have been converted to crop, hay, or pasture lands. Approximately 63% of the lands in forest cover in 1900 are still forested, 9% are grass, and 7% are regenerating forestlands or shrublands. The remaining 21% of previously forested lands have been converted to agriculture or urban areas.

Crop production increased dramatically (200–400%) after the introduction of fertilizer following World War II.

As population grew, towns and cities appeared changing the complexion of the area. By 1910, there were 22,000 people scattered in 30 communities across the Palouse Prairie.

Intensification of agriculture has affected both water quantity and quality. Agriculture has changed the hydrograph, increasing peak runoff flows and shortening the length of runoff. The result is more intense erosion and loss of perennial prairie streams. As early as the 1930s soil scientists were noting significant downcutting of regional rivers (Victor 1935) and expansion of channel width. Higher faster runoff caused streams to downcut quickly, effectively lowering the water table in immediately adjacent meadows. On the South Palouse River, this process was so efficient that by 1900 farming was possible where it had been too wet previously (Victor 1935). Replacement of perennial grasses with annual crops resulted in more overland flow and less infiltration, which translates at a watershed level to higher peak flows that subside more quickly than in the past. Once perennial prairie streams are now often dry by mid-summer. This has undoubtedly influenced the amphibious and aquatic species.

Lately, conversion of agricultural lands to suburban homesites on large plots invites a new suite of biodiversity onto the Palouse Prairie. University of Idaho wildlife professor J. Ratti documented changes in bird community composition over a 10-year period as he converted a wheat field into a suburban wildlife refuge. As of 1991, his 15-acre (61,000 m2) yard attracted 86 species of birds, an increase from 18 (Ratti and Scott 1991).

The Palouse region
of north central Idaho

Riparian areas offer breeding habitat for a greater diversity of birds than any other habitat in the U.S. (Ratti and Scott 1991). Loss of trees and shrubs along stream corridors means fewer birds and eventually fewer species. The majority of riparian areas have been lost across the bioregion.

People have taken their toll on wildlife. Birds and small mammals, once abundant, are now few. The intensive roadbed-to-roadbed farming currently practiced across the Palouse leaves few fences and fewer fencerows. Many intermittent streams have been plowed over; many perennial streams with large wet meadows adjacent to them are now intermittent or deeply incised.

Once an extensive prairie composed of mid-length perennial grasses such as Bluebunch wheatgrass (Agropyron spicatum) and Idaho fescue (Festuca idahoensis), today virtually all of the Palouse Prairie is planted in agricultural crops. The native prairie is one of the most endangered ecosystems in the United States (Noss et al. 1995), as only a little over one percent of the original prairie still exists.

Map of the Palouse grasslands ecoregion


Today, the Palouse region is the most important lentil-growing region in the USA.[9]

The next step in mechanization was development of the tractor. As with the combines, the first steam engine and gasoline-powered tractors were too heavy and awkward for use on the steep Palouse hills. The smaller, general use tractors introduced in the 1920s were only marginally used. As a result, by 1930, only 20% of Palouse farmers used tractors.[8]

It was only when the Idaho Harvester Company in Moscow began to manufacture a smaller machine that combine harvesting became feasible. By 1930, 90% of all Palouse wheat was harvested using combines.[8]

had been invented and was in use, but few farmers had enough horses to pull such a machine, which required a crew of 40 horses and six men to operate on level ground. Because of this, use of combines on the Palouse lagged behind use in other farming communities in the United States. combine Teams moved from farm to farm as the crops ripened. By this point, the [8]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.