World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000598302
Reproduction Date:

Title: Pathophysiology  
Author: World Heritage Encyclopedia
Language: English
Subject: Alexander Kapp (dermatologist and allergist), Alexander A. Bogomolets, Anorexia nervosa, Anion gap, Ectasia
Collection: Pathophysiology
Publisher: World Heritage Encyclopedia


Pathophysiology sample values
Na+ = 140 Cl = 100 BUN = 20 /
Glu = 150
K+ = 4 CO2 = 22 PCr = 1.0 \
HCO3 = 24 paCO2 = 40 paO2 = 95 pH = 7.40
pACO2 = 36 pAO2 = 105 A-a g = 10
Ca = 9.5 Mg2+ = 2.0 PO4 = 1
CK = 55 BE = −0.36 AG = 16
PMO = 300 PCO = 295 POG = 5 BUN:Cr = 20
UNa+ = 80 UCl = 100 UAG = 5 FENa = 0.95
UK+ = 25 USG = 1.01 UCr = 60 UO = 800
LDH = 100 TP = 7.6 AST = 25 TBIL = 0.7
ALP = 71 Alb = 4.0 ALT = 40 BC = 0.5
AST/ALT = 0.6 BU = 0.2
AF alb = 3.0 SAAG = 1.0 SOG = 60
CSF alb = 30 CSF glu = 60 CSF/S alb = 7.5 CSF/S glu = 0.4

Pathophysiology or physiopathology is a convergence of organism. Pathology describes the abnormal or undesired condition, whereupon pathophysiology seeks to explain the physiological processes or mechanisms whereby such condition develops and progresses.

Pathophysiology can also mean the functional changes associated with or resulting from disease or injury. Another definition is the functional changes that accompany a particular disease.[1]


  • History 1
    • Nineteenth century 1.1
      • Reductionism 1.1.1
      • Germ theory 1.1.2
      • Scientific medicine 1.1.3
    • Twentieth century 1.2
      • Biomedicine 1.2.1
      • Molecular paradigm 1.2.2
      • Disease mechanisms 1.2.3
  • Uses 2
  • See also 3
  • References 4


The term pathophysiology comes from the Ancient Greek πάθος (pathos) and φυσιολογία (phusiologia).

Nineteenth century


In Germany in the 1830s, Johannes Müller led the establishment of physiology research autonomous from medical research. In 1843, the Berlin Physical Society was founded in part to purge biology and medicine of vitalism, and in 1847 Hermann von Helmholtz, who joined the Society in 1845, published the paper "On the conservation of energy", highly influential to reduce physiology's research foundation to physical sciences. In the late 1850s, German anatomical pathologist Rudolf Virchow, a former student of Müller, directed focus to the cell, establishing cytology as the focus of physiological research, while Julius Cohnheim pioneered experimental pathology in medical schools' scientific laboratories.

Germ theory

By 1863, motivated by anthrax, but its routinely vanishing from blood left other scientists inferring it a mere byproduct of putrefaction.[2] In 1876, upon Ferdinand Cohn's report of a tiny spore stage of a bacterial species, the fellow German Robert Koch isolated Davaine's bacterides in pure culture—a pivotal step that would establish bacteriology as a distinct discipline—identified a spore stage, applied Jakob Henle's postulates, and confirmed Davaine's conclusion, a major feat for experimental pathology. Pasteur and colleagues followed up with ecological investigations confirming its role in the natural environment via spores in soil.

Also, as to

  1. ^ "Pathophysiology – Medical dictionary". Farlex, Inc. 
  2. ^ Théodoridès J (1966). "Casimir Davaine (1812-1882): A precursor of Pasteur". Medical history 10 (2): 155–65.  
  3. ^ a b c Bulloch, William, The History of Bacteriology (Oxford: Oxford University Press, 1938 & 1960 / New York: Dover Publications, 1979), p 143–144, 147-148
  4. ^ Carter KC (1980). "Germ theory, hysteria, and Freud's early work in psychopathology". Medical history 24 (3): 259–74.  
  5. ^ a b c d Silverman BD (2011). "William Henry Welch (1850-1934): The road to Johns Hopkins". Proceedings 24 (3): 236–42.  
  6. ^ Benson KR (1999). "Welch, Sedgwick, and the Hopkins model of hygiene". The Yale journal of biology and medicine 72 (5): 313–20.  
  7. ^ "In the bacteriology of the 1920s, the conversion of the R to the S form could be regarded as an adaptation to the environment. However, the transformation of Type I to Type II was the equivalent of the transformation of one species into another, a phenomenon never before observed. Avery was initially skeptical of Griffith's findings and for some time refused to accept the validity of his claims, believing that they were the result of inadequate experimental controls. Avery's research on therapeutic sera led him to conclude that pneumococcal types were fixed and that specific therapeutic agents could thus be developed to combat the various types. A transformation from type to type in vivo presented a disturbing clinical picture, as well as a challenge to the theoretical formulations of contemporary bacteriology" [Oswald T Avery Collection, "Shifting focus: Early work on bacterial transformation, 1928-1940", Profiles in Science, US National Library of Medicine, Web: 24 Jan 2013].
  8. ^ Dubos, René J, Oswald T Avery: His Life and Scientific Achievements (New York: Rockefeller University Press, 1976), pp 133, 135-136
  9. ^ a b Dubos, René, "Memories of working in Oswald Avery's laboratory", Symposium Celebrating the Thirty-Fifth Anniversary of the Publication of "Studies on the chemical nature of the substance inducing transformation of pneumococcal types", 2 Feb 1979
  10. ^ Lederberg J (1956). "Notes on the biological interpretation of Fred Griffith's finding". American Scientist 44 (3): 268–269. 
  11. ^ Lacks SA (Jan 2003). "Rambling and scrambling in bacterial transformation—a historical and personal memoir". J Bacteriol 185 (1): 1–6.  
  12. ^ a b c d e Bechtel, William, Discovering Cell Mechanisms: The Creation of Modern Cell Biology (New York: Cambridge University Press, 2005)
  13. ^ Kay, Lily, Molecular Vision of Life: Caltech, the Rockefeller Foundation, and the Rise of the New Biology (New York: Oxford University Press, 1993)
  14. ^ a b  
  15. ^ Sauerwald A, Hoesche C, Oschwald R, Kilimann MW (2007). "Lewis Thomas and droopy rabbit ears". Journal of Experimental Medicine 204 (12): 2777.  
  16. ^ Letter: Lewis Thomas (MSKCC) to Joshua Lederberg (Stanford Univ), 7 Aug 1978, p 1
  17. ^ Weissmann G (2006). "Planning science (a generation after Lewis Thomas)". Journal of Clinical Investigation 116 (6): 1463.  


See also

Pathophysiology is a required area of study for nearly all healthcare professional school programs (medical, dental, physician assistant, occupational therapy, physical therapy, nurse practitioner, radiation therapists, pharmacy, nursing, radiologic science, Chiropractic and paramedic programs) in the United States, Canada and other countries.


In the 1950s, researches on rheumatic fever, a complication of streptococcal infections, revealed it was mediated by the host's own immune response, stirring investigation by pathologist Lewis Thomas that led to identification of enzymes released by the innate immune cells macrophages and that degrade host tissue.[15] In the late 1970s, as president of Memorial Sloan–Kettering Cancer Center, Thomas collaborated with Lederberg, soon to become president of Rockefeller University, to redirect the funding focus of the US National Institutes of Health toward basic research into the mechanisms operating during disease processes, which at the time medical scientists were all but wholly ignorant of, as biologists had scarcely taken interest in disease mechanisms.[16] Thomas became for American basic researchers a patron saint.[17]

Disease mechanisms

Mindful of Griffith and Avery, Joshua Lederberg confirmed bacterial conjugation—reported decades earlier but controversial—and was awarded the 1958 Nobel Prize in Physiology or Medicine.[14] At Cold Spring Harbor Laboratory in Long Island, New York, Delbrück and Salvador Luria led the Phage Group—hosting Watson—discovering details of cell physiology by tracking changes to bacteria upon infection with their viruses, the process transduction. Lederberg led the opening of a genetics department at Stanford University's medical school, and facilitated greater communication between biologists and medical departments.[14]

In the late 1930s, light microscopy.[12] Around 1940, largely via cancer research at Rockefeller Institute, cell biology emerged as a new discipline filling the vast gap between cytology and biochemistry by applying new technology—ultracentrifuge and electron microscope—to identify and deconstruct cell structures, functions, and mechanisms.[12] The two new sciences interlaced, cell and molecular biology.[12]

The first genetics, Mendelian genetics, began at 1900, yet inheritance of Mendelian traits was localized to chromosomes by 1903, thus chromosomal genetics. Biochemistry emerged in the same decade.[12] In the 1940s, most scientists viewed the cell as a "sack of chemicals"—a membrane containing only loose molecules in chaotic motion—and the only especial cell structures as chromosomes, which bacteria lack as such.[12] Chromosomal DNA was presumed too simple, so genes were sought in chromosomal proteins. Yet in 1953, American biologist James Watson, British physicist Francis Crick, and British chemist Rosalind Franklin inferred DNA's molecular structure—a double helix—and conjectured it to spell a code. In the early 1960s, Crick helped crack a genetic code in DNA, thus establishing molecular genetics.

When Avery was away on summer vacation, Martin Dawson, British-Canadian, convinced that anything from England must be correct, repeated Griffith's results, then achieved transformation in vitro, too, opening it to precise investigation.[9] Having returned, Avery kept a photo of Griffith on his desk while his researchers followed the trail. In 1944, Avery, Colin MacLeod, and Maclyn McCarty reported the transformation factor as DNA, widely doubted amid estimations that something must act with it.[10] At the time of Griffith's report, it was unrecognized that bacteria even had genes.[11]

The 1918 pandemic triggered frenzied search for its cause, although most deaths were via lobar pneumonia, already attributed to pneumococcal invasion. In London, pathologist with the Ministry of Health, Fred Griffith in 1928 reported pneumococcal transformation from virulent to avirulent and between antigenic types—nearly a switch in species—challenging pneumonia's specific causation.[7][8] The laboratory of Rockefeller Institute's Oswald Avery, America's leading pneumococcal expert, was so troubled by the report that they refused to attempt repetition.[9]

Molecular paradigm

The first biomedical institutes, Pasteur Institute and Berlin Institute for Infectious Diseases, whose first directors were Pasteur and Koch, were founded in 1888 and 1891, respectively. America's first biomedical institute, The Rockefeller Institute for Medical Research, was founded in 1901 with Welch, nicknamed "dean of American medicine", as its scientific director, who appointed his former Hopkins student Simon Flexner as director of pathology and bacteriology laboratories. By way of World War I and World War II, Rockefeller Institute became the globe's leader in biomedical research.


Twentieth century

The American physician William Welch trained in German pathology from 1876 to 1878, including under Cohnheim, and opened America's first scientific laboratory—a pathology laboratory—at Bellevue Hospital in New York City in 1878.[5] Welch's course drew enrollment from students at other medical schools, which responded by opening their own pathology laboratories.[5] Once appointed by Daniel Coit Gilman, upon advice by John Shaw Billings, as founding dean of the medical school of the newly forming Johns Hopkins University that Gilman, as its first president, was planning, Welch traveled again to Germany for training in Koch's bacteriology in 1883.[5] Welch returned to America but moved to Baltimore, eager to overhaul American medicine, while blending Vichow's anatomical pathology, Cohnheim's experimental pathology, and Koch's bacteriology.[6] Hopkins medical school, led by the "Four Horsemen"—Welch, William Osler, Howard Kelly, and William Halsted—opened at last in 1893 as America's first medical school devoted to teaching German scientific medicine, so called.[5]

Scientific medicine

[4]—a disease's specific causation—presumably identifiable by scientific investigation.etiology crystallized the concept of Germ theory of disease [3]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.