World Library  
Flag as Inappropriate
Email this Article

Phlogiston theory

Article Id: WHEBN0000023886
Reproduction Date:

Title: Phlogiston theory  
Author: World Heritage Encyclopedia
Language: English
Subject: Joseph Priestley, List of Russian people, Antoine Lavoisier, List of Russian scientists, Calx
Collection: History of Chemistry, Obsolete Scientific Theories
Publisher: World Heritage Encyclopedia

Phlogiston theory

The alchemist and physician J. J. Becher proposed the phlogiston theory

The phlogiston theory is an obsolete scientific theory that postulated a fire-like element called phlogiston, contained within combustible bodies and released during combustion. The name comes from the Ancient Greek φλογιστόν phlogistón (burning up), from φλόξ phlóx (flame). It was first stated in 1667 by Johann Joachim Becher. The theory attempted to explain burning processes such as combustion and rusting, which are now collectively known as oxidation.


  • Theory 1
  • History of the theory 2
  • Challenge and demise 3
  • Enduring aspects 4
  • Notes 5


Phlogisticated substances are substances that contain phlogiston and dephlogisticate when burned.

In general, substances that burned in air were said to be rich in phlogiston; the fact that combustion soon ceased in an enclosed space was taken as clear-cut evidence that air had the capacity to absorb only a finite amount of phlogiston. When air had become completely phlogisticated it would no longer serve to support combustion of any material, nor would a metal heated in it yield a calx; nor could phlogisticated air support life. Breathing was thought to take phlogiston out of the body.[1]

Thus, Becher described phlogiston as a process that explained combustion through a process that was opposite to that of oxygen.

Joseph Black's student Daniel Rutherford discovered nitrogen in 1772 and the pair used the theory to explain his results. The residue of air left after burning, in fact a mixture of nitrogen and carbon dioxide, was sometimes referred to as phlogisticated air, having taken up all of the phlogiston. Conversely, when oxygen was first discovered, it was thought to be dephlogisticated air, capable of combining with more phlogiston and thus supporting combustion for longer than ordinary air.[2]

History of the theory

In 1667, Halle, proposed a variant of the theory in which he renamed Becher's terra pinguis to phlogiston, and it was in this form that the theory probably had its greatest influence.[6]

Challenge and demise

Eventually, quantitative experiments revealed problems, including the fact that some metals, such as magnesium, gained mass when they burned, even though they were supposed to have lost phlogiston. Some phlogiston proponents explained this by concluding that phlogiston had negative mass; others, such as Louis-Bernard Guyton de Morveau, gave the more conventional argument that it was lighter than air. However, a more detailed analysis based on the Archimedean principle and the densities of magnesium and its combustion product shows that just being lighter than air cannot account for the increase in mass.

During the eighteenth century, as it became clear that metals gained mass when they were oxidized, phlogiston was increasingly regarded as a principle rather than a material substance.[7] By the end of the eighteenth century, for the few chemists who still used the term phlogiston, the concept was linked to hydrogen. Joseph Priestley, for example, in referring to the reaction of steam on iron, whilst fully acknowledging that the iron gains mass as it binds with oxygen to form a calx, iron oxide, iron also loses “the basis of inflammable air (hydrogen), and this is the substance or principle, to which we give the name phlogiston.”[8] Following Lavoisier’s description of oxygen as the oxidizing principle (hence its name, from Ancient Greek: oksús, “sharp”; génos, “birth”, referring to oxygen's role in the formation of acids.). Priestley described phlogiston as the alkaline principle.[9]

Phlogiston remained the dominant theory until the 1780s when Antoine-Laurent Lavoisier showed that combustion requires a gas that has mass (oxygen) and could be measured by means of weighing closed vessels. The use of closed vessels also negated the buoyancy that had disguised the mass of the gases of combustion. These observations solved the mass paradox and set the stage for the new caloric theory of combustion.

Enduring aspects

Phlogiston theory permitted chemists to bring clarification of apparently different phenomena into a coherent structure: combustion, metabolism, and configuration of rust. The recognition of the relation between combustion and metabolism was a forerunner of the recognition that the metabolism of living organisms and combustion can be understood in terms of fundamentally related chemical processes.


  1. ^ James Bryan Conant, ed. The Overthrow of Phlogiston Theory: The Chemical Revolution of 1775–1789. Cambridge: Harvard University Press (1950), 14. OCLC 301515203.
  2. ^ "Priestley, Joseph". Retrieved 2009-06-05. 
  3. ^ a b Bowler, Peter J (2005). Making modern science: A historical survey. Chicago: University of Chicago Press. p. 60. 
  4. ^ Becher, Physica Subterranea p. 256 et seq.
  5. ^ Brock, William Hodson (1993). The Norton history of chemistry (1st American ed.). New York: W. W. Norton.  
  6. ^ Mason, Stephen F., (1962). A History of the Sciences (revised edition). New York: Collier Books. Ch. 26.
  7. ^ For a discussion of how the term phlogiston was understood during the eighteenth century, see: James R Partington & Douglas McKie; "Historical studies on the phlogiston theory"; Annals of Science, 1937, 2, 361–404; 1938, 3, 1–58; and 337–71; 1939, 5, 113–49. Reprinted 1981 as ISBN 978-0-405-13895-9.
  8. ^ Joseph Priestley; Considerations on the doctrine of phlogiston, and the decomposition of water; Philadelphia, Thomas Dobson, 1796; p.26.
  9. ^ Joseph Priestley; Heads of lectures on a course of experimental philosophy; London, Joseph Johnson, 1794.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.