World Library  
Flag as Inappropriate
Email this Article

Phototube

Article Id: WHEBN0002129702
Reproduction Date:

Title: Phototube  
Author: World Heritage Encyclopedia
Language: English
Subject: Vacuum tube, Measuring instrument, Cathode, Williams tube, Triode
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Phototube

Two different types of phototubes

A phototube or photoelectric cell is a type of gas-filled or vacuum tube that is sensitive to light. Such a tube is more correctly called a 'photoemissive cell' to distinguish it from photovoltaic or photoconductive cells. Phototubes were previously more widely used but are now replaced in many applications by solid state photodetectors. The photomultiplier tube is one of the most sensitive light detectors, and is still widely used in physics research.

Operating principles

Phototubes operate according to the photoelectric effect: Incoming photons strike a photocathode, knocking electrons out of its surface, which are attracted to an anode. Thus current is dependent on the frequency and intensity of incoming photons. Unlike photomultiplier tubes, no amplification takes place, so the current through the device is typically of the order of a few microamperes.[1]

The light wavelength range over which the device is sensitive depends on the material used for the photoemissive cathode. A caesium-antimony cathode gives a device that is very sensitive in the violet to ultra-violet region with sensitivity falling off to blindness to red light. Caesium on oxidised silver gives a cathode that is most sensitive to infra-red to red light, falling off towards blue, where the sensitivity is low but not zero.[2]

Vacuum devices have a near constant anode current for a given level of illumination relative to anode voltage. Gas filled devices are more sensitive but the frequency response to modulated illumination falls off at lower frequencies compared to the vacuum devices. The frequency response of vacuum devices is generally limited by the transit time of the electrons from cathode to anode.

Applications

One major application of the phototube was the reading of optical sound tracks for projected films. Phototubes were used in a variety of light-sensing applications until they were superseded by photoresistors and photodiodes.

References

  1. ^ J.B. Calvert (2002-01-16). "Electronics 30 - Phototubes".  
  2. ^ Mullard Technical Handbook Volume 4 Section 4:Photoemissive Cells (1960 Edition)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.