World Library  
Flag as Inappropriate
Email this Article

Piano acoustics

Article Id: WHEBN0000333081
Reproduction Date:

Title: Piano acoustics  
Author: World Heritage Encyclopedia
Language: English
Subject: Acoustics, Inharmonicity, Harmonic series (music), Infrasound, Beatmapping
Collection: Acoustics, Piano
Publisher: World Heritage Encyclopedia

Piano acoustics

Piano acoustics are the physical properties of the piano which affect its acoustics.


  • String length and mass 1
  • Inharmonicity and piano size 2
  • The Railsback curve 3
    • Shape of the curve 3.1
  • Multiple strings 4
  • See also 5
  • References 6
  • Further reading 7
  • External links 8

String length and mass

Strings vary in length and thickness, so that many octaves can fit on one sounding board

The strings of a piano vary in thickness, and therefore in mass per length, with bass strings thicker than treble. A typical range is from 1/30 inch (.85 mm) for the highest treble strings to 1/3 inch (8.5 mm) for the lowest bass. These differences in string thickness follow from well-understood acoustic properties of strings.

Given two strings, equally taut and heavy, one twice as long as the other, the longer would vibrate with a pitch one octave lower than the shorter. However, if one were to use this principle to design a piano it would be impossible to fit the bass strings onto a frame of any reasonable size. Furthermore, in such a hypothetical, gigantic piano, the lowest strings would travel so far in vibrating that they would strike one another. Instead, piano makers take advantage of the fact that a heavy string vibrates more slowly than a light string of identical length and tension; thus, the bass strings on the piano are much thicker than the others.

Inharmonicity and piano size

Any vibrating thing will vibrate at a number of frequencies above the fundamental, called overtones. When the overtones are integer multiples (e.g., 2×, 3× ... 6× ... ) of the fundamental frequency (called harmonics), then - neglecting damping - the oscillation is periodic, i.e., it vibrates in exactly the same way over and over again. Humans seem to enjoy the sound of periodic oscillations. For this reason, many musical instruments, including pianos, are designed to produce nearly periodic oscillations, that is, to have overtones as close as possible to the harmonics of the fundamental tone.

In an ideal vibrating string, when the wavelength of a wave on a stretched string is much greater than the thickness of the string, the wave velocity on the string is constant and the overtones are at the harmonics. That is why so many instruments are constructed of skinny strings or thin columns of air. However, for high overtones with short wavelengths approaching the diameter of the string, the string behaves more like a thick metal bar: its mechanical resistance to bending becomes an additional force to the tension, which 'raises the pitch' of the overtones. Only when the bending force is much smaller than the tension of the string, will leave its wave-speed (and the overtones pitched as harmonics) unchanged. The frequency-raised overtones (above the harmonics), called 'partials' can produce an unpleasant effect called "inharmonicity".

Basic strategies to reduce inharmonicity include decreasing the thickness of the string or increasing its length, choosing a flexible material with a low bending force, and increasing the tension force so that it stays much bigger than the bending force.

Winding a string allows an effective decrease in the thickness of the string. In a wound string, only the inner core resists bending while the windings function only to increase the linear density of the string. The thickness of the inner core is limited by its strength and by its tension; stronger materials allow for thinner cores at higher tensions, reducing inharmonicity. Hence, piano designers choose high quality steel for their strings, as its strength and durability allows string diameters to be minimized.

If string diameter, tension, mass, uniformity and length compromises were the only factors, then all pianos could be small, spinet-sized instruments. It has been found that 'longer wires' increase instrument power, harmonicity, reverberation and aid in producing a properly tempered tuning scale.

For longer wires, larger pianos achieve the longer wavelengths and tonal characteristics desired. Piano designers strive to fit the longest strings possible within the case; moreover, all else being equal, the sensible piano buyer tries to obtain the largest instrument compatible with budget and space.

Inharmonicity largely affects the lowest and highest notes in the piano and is one of the limits on the total range of a piano. The lowest strings, which would have to be the longest, are most limited by the size of the piano. The designer of a short piano is forced to use thick strings to increase mass density and is thus driven into inharmonicity.

The highest strings have to be under the greatest tension, yet must also be thin to allow for a low mass density. The limited strength of steel forces the piano designer to use very short strings whose short wavelengths thus generate inharmonicity.

The natural inharmonicity of a piano is used by the tuner to make slight adjustments in the tuning of a piano. The tuner will stretch the notes, slightly sharpening the high notes and lowering the low notes so that the overtones of lower notes have the same frequency as the fundamentals of higher notes.

See also Piano wire, Piano tuning, Psychoacoustics.

The Railsback curve

The Railsback curve, indicating the deviation between normal piano tuning and an equal-tempered scale.

The Railsback curve, first measured by O.L. Railsback, expresses the difference between normal piano tuning and an equal-tempered scale (one in which the frequencies of successive notes are related by a constant ratio, equal to the twelfth root of two). For any given note on the piano, the deviation between the normal pitch of that note and its equal-tempered pitch is given in cents (hundredths of a semitone).

As the Railsback curve shows, octaves are normally stretched on a well-tuned piano. That is, the high notes are higher, and the low notes lower, than they are in an equal-tempered scale. Railsback discovered that pianos were typically tuned in this manner not because of a lack of precision, but because of inharmonicity in the strings. Ideally, the overtone series of a note consists of frequencies that are integer multiples of the note's fundamental frequency. Inharmonicity as present in piano strings causes the successive overtones to be higher than they "should" be.

In order to tune an octave, a piano technician must reduce the speed of beating between the first overtone of a lower note and a higher note until it disappears. Because of inharmonicity, this first overtone will be sharper than a harmonic octave (which has the ratio of 2/1), making either the lower note flatter, or the higher note sharper, depending on which one is being tuned to. And because pianists' tessitura is commonly three octaves, it is critical that any note on the piano be tuned reasonably close to the eighth harmonic of the note three octaves below.

Thus to produce octaves that reflect the temperament and accommodate the inharmonicity of the instrument, the technician begins his stretch from the middle of the piano so that, as the stretch accumulates from register to register, it results in his desired stretch at the top and bottom of the instrument.

Shape of the curve

Because string inharmonicity only causes harmonics to be sharper, the Railsback curve, which is functionally the integral of the inharmonicity at an octave, is monotonically increasing. A piano is tuned beginning in the center, so the Railsback curve has a shallow slope in this area. But as octaves are stretched to compensate for inharmonicity, the stretch accumulates as tuned notes ascend and descend, and their curves become more pronounced.

The inharmonicity in a string is caused primarily by its stiffness. Decreased length and increased thickness both contribute to inharmonicity. For the middle to high part of the piano range, string thickness remains constant as length decreases, contributing to greater inharmonicity in the higher notes. For the low range of the instrument, string thickness is drastically increased, especially in shorter pianos which cannot compensate with longer strings, producing greater inharmonicity in this range as well.

In the bass register, a second factor affecting the inharmonicity is the resonance caused by the acoustic impedance of the piano sounding board. These resonances exhibit positive feedback on the inharmonic effect: if a string vibrates at a frequency just below that of a resonance, the impedance will cause it to vibrate even lower, and if it vibrates just above a resonance, the impedance causes it to vibrate higher. The sounding board has multiple resonant frequencies which are unique to any particular piano. This contributes to the greater variance in the empirically measured Railsback curve in the lower octaves.

Multiple strings

All but the lowest notes of a piano have multiple strings tuned to the same frequency. This allows the piano to have a loud attack with a fast decay but a long sustain in the ADSR system.

The three strings create a coupled oscillator with three normal modes (with two polarizations each). Since the strings are only weakly coupled, the normal modes have imperceptibly different frequencies. But they transfer their vibrational energy to the sounding board at significantly different rates.

The normal mode in which the three strings oscillate together is most efficient at transferring energy since all three strings pull in the same direction at the same time. It sounds loud, but decays quickly. This normal mode is responsible for the rapid staccato "Attack" part of the note.

In the other two normal modes the strings do not all pull together, e.g., one will pull up while the other two pull down. There is slow transfer of energy to the sounding board, generating a soft but near-constant "sustain". [1]

Frequencies of the audible range on a twelve and eight equal tempered scale.

See also


  1. ^ Dean Livelybrooks, Physics of Sound and Music, Course PHYS 152, Lecture 16, University of Oregon, Fall 2007.

Further reading

  • Ortiz-Berenguer, Luis I., F. Javier Casajús-Quirós, Marisol Torres-Guijarro, J.A. Beracoechea. Piano Transcription Using Pattern Recognition: Aspects On Parameter Extraction: Proceeds of The International Conference on Digital Audio Effects, Naples, October 2004.
  • Railsback, O. L. (1938). "Scale Temperament as Applied to Piano Tuning". The Journal of the Acoustical Society of America 9 (3): 274.  
  • Sundberg, Johan (1991). The Science of Musical Sounds. San Diego: Academic Press.  
  • Weinreich, G. (1977). "Coupled piano strings". The Journal of the Acoustical Society of America 62.  

External links

  • Five lectures on the acoustics of the piano
  • A. H. Benade Sound Production in Pianos
  • Robert W. Young, Inharmonicity of Plain Wire Piano Strings' The Journal of the Acoustical Society of America, vol 24 no. 3 (May 1952)
  • "The Engineering of Concert Grand Pianos," by Richard Dain, FRENG
  • D. Clausen, B. Hughes and W. Stuart "A design analysis of a Stuart and Sons grand piano frame"
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.