World Library  
Flag as Inappropriate
Email this Article

Poisson summation formula

Article Id: WHEBN0000502042
Reproduction Date:

Title: Poisson summation formula  
Author: World Heritage Encyclopedia
Language: English
Subject: Nyquist–Shannon sampling theorem, Fourier analysis, Poisson formula, Periodic summation, Particle Mesh
Collection: Fourier Analysis, Generalized Functions, Lattice Points, Summability Methods, Theorems in Analysis
Publisher: World Heritage Encyclopedia

Poisson summation formula

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.


  • Forms of the equation 1
  • Distributional formulation 2
  • Derivation 3
  • Applicability 4
  • Applications 5
    • Method of images 5.1
    • Sampling 5.2
    • Ewald summation 5.3
    • Lattice points in a sphere 5.4
    • Number theory 5.5
  • Generalizations 6
    • Selberg trace formula 6.1
  • See also 7
  • Notes 8
  • References 9
  • Further reading 10

Forms of the equation

For appropriate functions f,\,  the Poisson summation formula may be stated as:

\sum_{n=-\infty}^\infty f(n)=\sum_{k=-\infty}^\infty \hat f\left(k\right),     where \hat f  is the Fourier transform[note 1] of f\,;  that is   \hat f(\nu) = \mathcal{F}\{f(x)\}.






With the substitution, g(xP)\ \stackrel{\text{def}}{=}\ f(x),\,  and the Fourier transform property,  \mathcal{F}\{g(x P)\}\ = \frac{1}{P} \cdot \hat g\left(\frac{\nu}{P}\right)  (for P > 0),  Eq.1 becomes:

\sum_{n=-\infty}^\infty g(nP)=\frac{1}{P}\sum_{k=-\infty}^\infty \hat g\left(\frac{k}{P}\right)     (Stein & Weiss 1971).






With another definition,  s(t+x)\ \stackrel{\text{def}}{=}\ g(x),\,  and the transform property  \mathcal{F}\{s(t+x)\}\ = \hat s(\nu)\cdot e^{i 2\pi \nu t},  Eq.2 becomes a periodic summation (with period P) and its equivalent Fourier series:

\underbrace{\sum_{n=-\infty}^{\infty} s(t + nP)}_{S_P(t)} = \sum_{k=-\infty}^{\infty} \underbrace{\frac{1}{P}\cdot \hat s\left(\frac{k}{P}\right)}_{S[k]}\ e^{i 2\pi \frac{k}{P} t }     (Pinsky 2002; Zygmund 1968).






Similarly, the periodic summation of a function's Fourier transform has this Fourier series equivalent:

\sum_{k=-\infty}^{\infty} \hat s(\nu + k/T) = \sum_{n=-\infty}^{\infty} T\cdot s(nT)\ e^{-i 2\pi n T \nu} \equiv \mathcal{F}\left \{ \sum_{n=-\infty}^{\infty} T\cdot s(nT)\ \delta(t-nT)\right \},






where T represents the time interval at which a function s(t) is sampled, and 1/T is the rate of samples/sec.

Distributional formulation

These equations can be interpreted in the language of distributions (Córdoba 1988; Hörmander 1983, §7.2) for a function f whose derivatives are all rapidly decreasing (see Schwartz function). Using the Dirac comb distribution and its Fourier series:

\sum_{n=-\infty}^\infty \delta(x-nT) \equiv \sum_{k=-\infty}^\infty \frac{1}{T}\cdot e^{-i 2\pi \frac{k}{T} x} \quad\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad \frac{1}{T}\cdot \sum_{k=-\infty}^{\infty} \delta (\nu+k/T),






In other words, the periodization of a Dirac delta \delta, resulting in a Dirac comb, corresponds to the discretization of its spectrum which is constantly one. Hence, this again is a Dirac comb but with reciprocal increments.

Eq.1 readily follows:

\begin{align} \sum_{k=-\infty}^\infty \hat f(k) &= \sum_{k=-\infty}^\infty \left(\int_{-\infty}^{\infty} f(x)\ e^{-i 2\pi k x} dx \right) = \int_{-\infty}^{\infty} f(x) \underbrace{\left(\sum_{k=-\infty}^\infty e^{-i 2\pi k x}\right)}_{\sum_{n=-\infty}^\infty \delta(x-n)} dx \\ &= \sum_{n=-\infty}^\infty \left(\int_{-\infty}^{\infty} f(x)\ \delta(x-n)\ dx \right) = \sum_{n=-\infty}^\infty f(n). \end{align}


\begin{align} \sum_{k=-\infty}^{\infty} \hat s(\nu + k/T) &= \sum_{k=-\infty}^{\infty} \mathcal{F}\left \{ s(t)\cdot e^{-i 2\pi\frac{k}{T}t}\right \}\\ &= \mathcal{F} \bigg \{s(t)\underbrace{\sum_{k=-\infty}^{\infty} e^{-i 2\pi\frac{k}{T}t}}_{T \sum_{n=-\infty}^{\infty} \delta(t-nT)}\bigg \} = \mathcal{F}\left \{\sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot \delta(t-nT)\right \}\\ &= \sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot \mathcal{F}\left \{\delta(t-nT)\right \} = \sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot e^{-i 2\pi nT \nu}. \end{align}


We can also prove that Eq.3 holds in the sense that if s(t)  ∈ L1(R), then the right-hand side is the (possibly divergent) Fourier series of the left-hand side. This proof may be found in either (Pinsky 2002) or (Zygmund 1968). It follows from the dominated convergence theorem that sP(t) exists and is finite for almost every t. And furthermore it follows that sP is integrable on the interval [0,P]. The right-hand side of Eq.3 has the form of a Fourier series. So it is sufficient to show that the Fourier series coefficients of sP(t) are \scriptstyle \frac{1}{P} \hat s\left(\frac{k}{P}\right).. Proceeding from the definition of the Fourier coefficients we have:

\begin{align} S[k]\ &\stackrel{\text{def}}{=}\ \frac{1}{P}\int_0^{P} s_P(t)\cdot e^{-i 2\pi \frac{k}{P} t}\, dt\\ &=\ \frac{1}{P}\int_0^{P} \left(\sum_{n=-\infty}^{\infty} s(t + nP)\right) \cdot e^{-i 2\pi\frac{k}{P} t}\, dt\\ &=\ \frac{1}{P} \sum_{n=-\infty}^{\infty} \int_0^{P} s(t + nP)\cdot e^{-i 2\pi\frac{k}{P} t}\, dt, \end{align}
where the interchange of summation with integration is once again justified by dominated convergence. With a change of variables (τ = t + nP) this becomes:
\begin{align} S[k] = \frac{1}{P} \sum_{n=-\infty}^{\infty} \int_{nP}^{nP + P} s(\tau) \ e^{-i 2\pi \frac{k}{P} \tau} \ \underbrace{e^{i 2\pi k n}}_{1}\,d\tau \ =\ \frac{1}{P} \int_{-\infty}^{\infty} s(\tau) \ e^{-i 2\pi \frac{k}{P} \tau} d\tau = \frac{1}{P}\cdot \hat s\left(\frac{k}{P}\right) \end{align}       QED.


Eq.3 holds provided s(t) is a continuous integrable function which satisfies

|s(t)| + |\hat{s}(t)| \le C (1+|t|)^{-1-\delta}

for some C, δ > 0 and every t (Grafakos 2004; Stein & Weiss 1971). Note that such s(t) is uniformly continuous, this together with the decay assumption on s, show that the series defining sP converges uniformly to a continuous function.   Eq.3 holds in the strong sense that both sides converge uniformly and absolutely to the same limit (Stein & Weiss 1971).

Eq.3 holds in a pointwise sense under the strictly weaker assumption that s has bounded variation and

2\cdot s(t)=\lim_{\varepsilon\to 0} s(t+\varepsilon) + \lim_{\varepsilon\to 0} s(t-\varepsilon)     (Zygmund 1968).

The Fourier series on the right-hand side of Eq.3 is then understood as a (conditionally convergent) limit of symmetric partial sums.

As shown above, Eq.3 holds under the much less restrictive assumption that s(t) is in L1(R), but then it is necessary to interpret it in the sense that the right-hand side is the (possibly divergent) Fourier series of sP(t) (Zygmund 1968). In this case, one may extend the region where equality holds by considering summability methods such as Cesàro summability. When interpreting convergence in this way Eq.2 holds under the less restrictive conditions that g(x) is integrable and 0 is a point of continuity of gP(x). However Eq.2 may fail to hold even when both g\, and \hat{g} are integrable and continuous, and the sums converge absolutely (Katznelson 1976).


Method of images

In partial differential equations, the Poisson summation formula provides a rigorous justification for the fundamental solution of the heat equation with absorbing rectangular boundary by the method of images. Here the heat kernel on R2 is known, and that of a rectangle is determined by taking the periodization. The Poisson summation formula similarly provides a connection between Fourier analysis on Euclidean spaces and on the tori of the corresponding dimensions (Grafakos 2004). In one dimension, the resulting solution is called a theta function.


In the statistical study of time-series, if f is a function of time, then looking only at its values at equally spaced points of time is called "sampling." In applications, typically the function f is band-limited, meaning that there is some cutoff frequency f_o such that the Fourier transform is zero for frequencies exceeding the cutoff: \hat{f}(\xi)=0 for |\xi|>f_o. For band-limited functions, choosing the sampling rate 2f_o guarantees that no information is lost: since \hat f can be reconstructed from these sampled values, then, by Fourier inversion, so can f. This leads to the Nyquist–Shannon sampling theorem (Pinsky 2002).

Ewald summation

Computationally, the Poisson summation formula is useful since a slowly converging summation in real space is guaranteed to be converted into a quickly converging equivalent summation in Fourier space. (A broad function in real space becomes a narrow function in Fourier space and vice versa.) This is the essential idea behind Ewald summation.

Lattice points in a sphere

The Poisson summation formula may be used to derive Landau's asymptotic formula for the number of lattice points in a large Euclidean sphere. It can also be used to show that if an integrable function, f\, and \hat f both have compact support then f = 0\,  (Pinsky 2002).

Number theory

In number theory, Poisson summation can also be used to derive a variety of functional equations including the functional equation for the Riemann zeta function.[1]

One important such use of Poisson summation concerns theta functions: periodic summations of Gaussians . Put q= e^{i\pi \tau } , for \tau a complex number in the upper half plane, and define the theta function:

\theta ( \tau) = \sum_n q^{n^2}.

The relation between \theta (-1/\tau) and \theta (\tau) turns out to be important for number theory, since this kind of relation is one of the defining properties of a modular form. By choosing f= e^{-\pi x^2} in the second version of the Poisson summation formula (with a = 0), and using the fact that \hat f = e^{-\pi \xi ^2} , one gets immediately

\theta \left({-1\over\tau}\right) = \sqrt{ \tau \over i} \theta (\tau)

by putting {1/\lambda} = \sqrt{ \tau/i} .

It follows from this that \theta^8 has a simple transformation property under \tau \mapsto {-1/ \tau} and this can be used to prove Jacobi's formula for the number of different ways to express an integer as the sum of eight perfect squares.


The Poisson summation formula holds in Euclidean space of arbitrary dimension. Let Λ be the lattice in Rd consisting of points with integer coordinates; Λ is the character group, or Pontryagin dual, of Rd. For a function ƒ in L1(Rd), consider the series given by summing the translates of ƒ by elements of Λ:

\sum_{\nu\in\Lambda} f(x+\nu).

Theorem For ƒ in L1(Rd), the above series converges pointwise almost everywhere, and thus defines a periodic function Pƒ on Λ. Pƒ lies in L1(Λ) with ||Pƒ||1 ≤ ||ƒ||1. Moreover, for all ν in Λ, Pƒ̂(ν) (Fourier transform on Λ) equals ƒ̂(ν) (Fourier transform on Rd).

When ƒ is in addition continuous, and both ƒ and ƒ̂ decay sufficiently fast at infinity, then one can "invert" the domain back to Rd and make a stronger statement. More precisely, if

|f(x)| + |\hat{f}(x)| \le C (1+|x|)^{-d-\delta}

for some C, δ > 0, then

\sum_{\nu\in\Lambda} f(x+\nu) = \sum_{\nu\in\Lambda}\hat{f}(\nu)e^{2\pi i x\cdot\nu},     (Stein & Weiss 1971, VII §2)

where both series converge absolutely and uniformly on Λ. When d = 1 and x = 0, this gives the formula given in the first section above.

More generally, a version of the statement holds if Λ is replaced by a more general lattice in Rd. The dual lattice Λ′ can be defined as a subset of the dual vector space or alternatively by Pontryagin duality. Then the statement is that the sum of delta-functions at each point of Λ, and at each point of Λ′, are again Fourier transforms as distributions, subject to correct normalization.

This is applied in the theory of theta functions, and is a possible method in geometry of numbers. In fact in more recent work on counting lattice points in regions it is routinely used − summing the indicator function of a region D over lattice points is exactly the question, so that the LHS of the summation formula is what is sought and the RHS something that can be attacked by mathematical analysis.

Selberg trace formula

Further generalisation to locally compact abelian groups is required in number theory. In non-commutative harmonic analysis, the idea is taken even further in the Selberg trace formula, but takes on a much deeper character.

A series of mathematicians applying harmonic analysis to number theory, most notably Martin Eichler, Atle Selberg, Robert Langlands, and James Arthur, have generalised the Poisson summation formula to the Fourier transform on non-commutative locally compact reductive algebraic groups G with a discrete subgroup \Gamma such that G/\Gamma has finite volume. For example, G can be the real points of GL_n and \Gamma can be the integral points of GL_n. In this setting, G plays the role of the real number line in the classical version of Poisson summation, and \Gamma plays the role of the integers n that appear in the sum. The generalised version of Poisson summation is called the Selberg Trace Formula, and has played a role in proving many cases of Artin's conjecture and in Wiles's proof of Fermat's Last Theorem. The left-hand side of (1) becomes a sum over irreducible unitary representations of G, and is called "the spectral side," while the right-hand side becomes a sum over conjugacy classes of \Gamma, and is called "the geometric side."

The Poisson summation formula is the archetype for vast developments in harmonic analysis and number theory.

See also


  1. ^ \hat{f}(\nu)\ \stackrel{\mathrm{def}}{=}\int_{-\infty}^{\infty} f(x)\ e^{-2\pi i\nu x}\, dx.


  1. ^ H. M. Edwards (1974). Riemann's Zeta Function. Academic Press. ISBN 0-486-41740-9. (pages 209-211)

Further reading

  • Benedetto, J.J.; Zimmermann, G. (1997), "Sampling multipliers and the Poisson summation formula", J. Fourier Ana. App. 3 (5) .
  • Córdoba, A., "La formule sommatoire de Poisson", C.R. Acad. Sci. Paris, Series I 306: 373–376 .
  • Gasquet, Claude; Witomski, Patrick (1999), Fourier Analysis and Applications, Springer, pp. 344–352, .  
  • Grafakos, Loukas (2004), Classical and Modern Fourier Analysis, Pearson Education, Inc., pp. 253–257, .  
  • Higgins, J.R. (1985), "Five short stories about the cardinal series", Bull. Amer. Math. Soc. 12 (1): 45–89, .  
  • .  
  • Katznelson, Yitzhak (1976), An introduction to harmonic analysis (Second corrected ed.), New York: Dover Publications, Inc,  
  • Pinsky, M. (2002), Introduction to Fourier Analysis and Wavelets., Brooks Cole .
  • Stein, Elias; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton University Press, .  
  • .  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.