World Library  
Flag as Inappropriate
Email this Article

Pozzolanic reaction

Article Id: WHEBN0016877627
Reproduction Date:

Title: Pozzolanic reaction  
Author: World Heritage Encyclopedia
Language: English
Subject: Pozzolanic activity, Alkali–silica reaction, Alkali–aggregate reaction, Cement, Pulverised fuel ash
Collection: Cement, Chemical Reactions, Concrete, Masonry
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Pozzolanic reaction

The pozzolanic reaction is the chemical reaction that occurs in portland cement upon the addition of pozzolans. It is the main reaction involved in the Roman concrete invented in Ancient Rome and used to build, for example, the Pantheon. The pozzolanic reaction converts a silica-rich precursor with no cementing properties, to a calcium silicate, with good cementing properties.

In chemical terms, the pozzolanic reaction occurs between calcium hydroxide, also known as portlandite (Ca(OH)2), and silicic acid (written as H4SiO4 or as Si(OH)4):

Ca(OH)2 + H4SiO4 → CaH2SiO4·2 H2O

or summarized in abbreviated notation of cement chemists:

CH + SH → C-S-H

The product CaH2SiO4·2 H2O is a calcium silicate hydrate, also abbreviated as C-S-H in cement chemist notation, the hyphenation denotes the variable stoichiometry. The ratio Ca/Si, or C/S, and the number of water molecules can vary and the above-mentioned stoichiometry may differ.

Many pozzolans may also contain aluminate, or Al(OH)4, that will react with calcium hydroxide and water to form calcium aluminate hydrates such as C4AH13, C3AH6 or hydrogarnet, or in combination with silica C2ASH8 or strätlingite (cement chemist notation). In the presence of anionic groups such as sulphate, carbonate or chloride, AFm phases and AFt or ettringite phases can form.

See also

References

  • Cook D.J. (1986) Natural pozzolanas. In: Swamy R.N., Editor (1986) Cement Replacement Materials, Surrey University Press, p. 200.
  • Lechtman H. and Hobbs L. (1986) "Roman Concrete and the Roman Architectural Revolution", Ceramics and Civilization Volume 3: High Technology Ceramics: Past, Present, Future, edited by W.D. Kingery and published by the American Ceramics Society, 1986; and Vitruvius, Book II:v,1; Book V:xii2.
  • McCann A.M. (1994) "The Roman Port of Cosa" (273 BC), Scientific American, Ancient Cities, pp. 92–99, by Anna Marguerite McCann. Covers, hydraulic concrete, of "Pozzolana mortar" and the 5 piers, of the Cosa harbor, the Lighthouse on pier 5, diagrams, and photographs. Height of Port city: 100 BC.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.