World Library  
Flag as Inappropriate
Email this Article

Product order

Article Id: WHEBN0001956306
Reproduction Date:

Title: Product order  
Author: World Heritage Encyclopedia
Language: English
Subject: Order theory, Lexicographical order, Dickson's lemma, Category of preordered sets, Well-quasi-ordering
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Product order

In mathematics, given two ordered sets A and B, one can induce a partial ordering on the Cartesian product A × B. Given two pairs (a1,b1) and (a2,b2) in A × B, one sets (a1,b1) ≤ (a2,b2) if and only if a1a2 and b1b2. This ordering is called the product order,[1][2][3][4] or alternatively the coordinatewise order,[5][3][6] or even the componentwise order.[2][7]

Another possible ordering on A × B is the lexicographical order. Unlike the latter, the product order of two totally ordered sets is not total. For example, the pairs (0, 1) and (1, 0) are incomparable in the product order of 0 < 1 with itself. The lexicographic order of totally ordered sets is however a linear extension of their product order. In general, the product order is a subrelation of the lexicographic order.[3]

The Cartesian product with product order is the categorical product in the category of partially ordered sets with monotone functions.[7]

The product order generalizes to arbitrary (possibly infinitary) Cartesian products. Furthermore, given a set A, the product order over the Cartesian product ∏A{0, 1} can be identified with the inclusion ordering of subsets of A.[4]

The notion applies equally well to preorders. The product order is also the categorical product in a number of richer categories, including lattices and Boolean algebras.[7]

References

  1. ^ Neggers, J.; Kim, Hee Sik (1998), "4.2 Product Order and Lexicographic Order", Basic Posets, World Scientific, pp. 64–78,  
  2. ^ a b Sudhir R. Ghorpade; Balmohan V. Limaye (2010). A Course in Multivariable Calculus and Analysis. Springer. p. 5.  
  3. ^ a b c Egbert Harzheim (2006). Ordered Sets. Springer. pp. 86–88.  
  4. ^ a b Victor W. Marek (2009). Introduction to Mathematics of Satisfiability. CRC Press. p. 17.  
  5. ^ Davey & Priestley, Introduction to Lattices and Order (Second Edition), 2002, p. 18
  6. ^ Alexander Shen; Nikolai Konstantinovich Vereshchagin (2002). Basic Set Theory. American Mathematical Soc. p. 43.  
  7. ^ a b c Paul Taylor (1999). Practical Foundations of Mathematics. Cambridge University Press. pp. 144–145 and 216.  

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.