World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003528170
Reproduction Date:

Title: Pseudospectrum  
Author: World Heritage Encyclopedia
Language: English
Subject: Albrecht Böttcher, Spectrum (disambiguation), Spectrum (functional analysis), Jordan normal form, Quantum Algorithms
Publisher: World Heritage Encyclopedia


In mathematics, the pseudospectrum of an operator is a set containing the spectrum of the operator and the numbers that are "almost" eigenvalues. Knowledge of the pseudospectrum can be particularly useful for understanding non-normal operators and their eigenfunctions.

The ε-pseudospectrum of a matrix A consists of all eigenvalues of matrices which are ε-close to A:

\Lambda_\epsilon(A) = \{\lambda \in \mathbb{C} \mid \exists x \in \mathbb{C}^n \setminus \{0\}, \exists E \in \mathbb{C}^{n \times n} \colon (A+E)x = \lambda x, \|E\| \leq \epsilon \}.

Numerical algorithms which calculate the eigenvalues of a matrix give only approximate results due to rounding and other errors. These errors can be described with the matrix E.


  • Pseudospectra Gateway / Embree and Trefethen [1]
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.