World Library  
Flag as Inappropriate
Email this Article

Quantum dot

Colloidal quantum dots irradiated with a UV light. Different sized quantum dots emit different color light due to quantum confinement.

A Quantum dot (QD) is a crystal of semiconductor material whose diameter is on the order of several nanometers - a size which results in its free charge carriers experiencing "quantum confinement" in all three spatial dimensions. The electronic properties of quantum dots are intermediate between those of bulk semiconductors and of discrete molecules and closely related to their size and shape.[1][2][3] This allows properties such as the band gap, emission color, and absorption spectrum to be highly tuneable, as the size distribution of quantum dots can be controlled during fabrication. For example, the band gap in a quantum dot, which determines the frequency range of emitted light, is inversely related to its size. In fluorescent dye applications, the frequency of emitted light increases as the size of the quantum dot decreases, shifting the color of emitted light from red to violet.[4]

Researchers have studied applications for quantum dots in transistors, solar cells, LEDs, and diode lasers. They have also investigated quantum dots as agents for medical imaging and as possible qubits in quantum computing. The small size of quantum dots allows them to be suspended in various solvents and thus compatible with solution processing techniques such as spin coating and inkjet printing.[5] These are inexpensive compared to conventional semiconductor device fabrication involving small areas and ultra-high vacuum. The first commercial release of a product utilizing quantum dots was the Sony XBR X900A series of flat panel televisions released in 2013.[6]

Quantum dots were first discovered by Alexey Ekimov in 1981[7][8][9] in a glass matrix[10] and then in colloidal solutions by Louis E. Brus in 1985.[11] The term "quantum dot" was coined by Mark Reed.[12]


  • Quantum confinement in semiconductors 1
  • Production 2
    • Colloidal synthesis 2.1
    • Plasma synthesis 2.2
    • Fabrication 2.3
    • Viral assembly 2.4
    • Electrochemical assembly 2.5
    • Bulk-manufacture 2.6
    • Heavy metal-free quantum dots 2.7
  • Environmental impact 3
  • Optical properties 4
  • Applications 5
    • Computing 5.1
    • Biology 5.2
    • Photovoltaic devices 5.3
    • Light emitting devices 5.4
    • Photodetector devices 5.5
    • Photocatalysts 5.6
  • Theoretical models 6
    • Quantum mechanics 6.1
    • Semiclassical 6.2
    • Classical mechanics 6.3
  • See also 7
  • References 8
  • External links 9

Quantum confinement in semiconductors

3D confined electron wave functions in a quantum dot. Here, rectangular and triangular-shaped quantum dots are shown. Energy states in rectangular dots are more s-type and p-type. However, in a triangular dot the wave functions are mixed due to confinement symmetry. (Click for animation)

In a semiconductor crystallite whose size is smaller than twice the size of its exciton Bohr radius, the excitons are squeezed, leading to quantum confinement. The energy levels can then be modeled using the particle in a box model in which the energy of different states is dependent on the length of the box, much like the pitch of a string in a musical instrument is dependent on its length. Comparing the quantum dots size to the Bohr radius of the electron and hole wave functions, 3 regimes can be defined. A 'strong confinement regime' is defined as the quantum dots radius being smaller than both electron and hole Bohr radius, 'weak confinement' is given when the quantum dot is larger than both. For semiconductors in which electron and hole masses are markedly different, an 'intermediate confinement regime' exists, where the quantum dots radius is larger than the Bohr radius of one (typically the hole), but not the other charge carrier.

Splitting of energy levels for small quantum dots due to the quantum confinement effect. The horizontal axis is the radius, or the size, of the quantum dots and ab* is the Exciton Bohr radius.
Band gap energy
The band gap can become larger in the strong confinement regime where the size of the quantum dot is smaller than the Exciton Bohr radius ab* as the energy levels split up.
a^*_b = \varepsilon_r\left(\frac{m}{\mu}\right) a_b
where ab is the Bohr radius=0.053 nm, m is the mass, μ is the reduced mass, and εr is the size-dependent dielectric constant (Relative permittivity).
This results in the increase in the total emission energy (the sum of the energy levels in the smaller band gaps in the strong confinement regime is larger than the energy levels in the band gaps of the original levels in the weak confinement regime) and the emission at various wavelengths; which is precisely what happens in the sun, where the quantum confinement effects are completely dominant and the energy levels split up to the degree that the energy spectrum is almost continuous, thus emitting white light.
Confinement energy
The exciton entity can be modeled using the particle in the box. The electron and the hole can be seen as hydrogen in the Bohr model with the hydrogen nucleus replaced by the hole of positive charge and negative electron mass. Then the energy levels of the exciton can be represented as the solution to the particle in a box at the ground level (n = 1) with the mass replaced by the reduced mass. Thus by varying the size of the quantum dot, the confinement energy of the exciton can be controlled.
Bound exciton energy
There is Coulomb attraction between the negatively charged electron and the positively charged hole. The negative energy involved in the attraction is proportional to Rydberg's energy and inversely proportional to square of the size-dependent dielectric constant[13] of the semiconductor. When the size of the semiconductor crystal is smaller than the Exciton Bohr radius, the Coulomb interaction must be modified to fit the situation.

Therefore, the sum of these energies can be represented as:

\begin{align} E_\textrm{confinement} &= \frac{\hbar^2\pi^2}{2 a^2}\left(\frac{1}{m_e} + \frac{1}{m_h}\right) = \frac{\hbar^2\pi^2}{2\mu a^2}\\ E_\textrm{exciton} &= -\frac{1}{\epsilon_r^2}\frac{\mu}{m_e}R_y = -R_y^*\\ E &= E_\textrm{band gap} + E_\textrm{confinement} + E_\textrm{exciton}\\ &= E_\textrm{band gap} + \frac{\hbar^2\pi^2}{2\mu a^2} - R^*_y \end{align}

where μ is the reduced mass, a is the radius, me is the free electron mass, mh is the hole mass, and εr is the size-dependent dielectric constant.

Although the above equations were derived using simplifying assumptions, the implications are clear; the energy of the quantum dots is dependent on their size due to the quantum confinement effects, which dominate below the critical size leading to changes in the optical properties. This effect of quantum confinement on the quantum dots has been experimentally verified[14] and is a key feature of many emerging electronic structures.[15][16]

Besides confinement in all three dimensions (i.e., a quantum dot), other quantum confined semiconductors include:

  • Quantum wires, which confine electrons or holes in two spatial dimensions and allow free propagation in the third.
  • Quantum wells, which confine electrons or holes in one dimension and allow free propagation in two dimensions.


Quantum Dots with gradually stepping emission from violet to deep red are being produced in a kg scale at PlasmaChem GmbH

There are several ways to confine excitons in semiconductors, resulting in different methods to produce quantum-confined semiconductor structures. In general, quantum wires, wells and dots are grown by advanced epitaxial techniques. Nanocrystals may be produced by gas-phase, liquid-phase and solid-phase approaches.[17]

Colloidal synthesis

surfactants,[18] and solvents. Heating the solution at high temperature, the precursors decompose forming monomers which then nucleate and generate nanocrystals. The temperature during the synthetic process is a critical factor in determining optimal conditions for the nanocrystal growth. It must be high enough to allow for rearrangement and annealing of atoms during the synthesis process while being low enough to promote crystal growth. The concentration of monomers is another critical factor that has to be stringently controlled during nanocrystal growth. The growth process of nanocrystals can occur in two different regimes, "focusing" and "defocusing". At high monomer concentrations, the critical size (the size where nanocrystals neither grow nor shrink) is relatively small, resulting in growth of nearly all particles. In this regime, smaller particles grow faster than large ones (since larger crystals need more atoms to grow than small crystals) resulting in "focusing" of the size distribution to yield nearly monodisperse particles. The size focusing is optimal when the monomer concentration is kept such that the average nanocrystal size present is always slightly larger than the critical size. Over time, the monomer concentration diminishes, the critical size becomes larger than the average size present, and the distribution "defocuses".

Cadmium sulfide quantum dots on cells

There are colloidal methods to produce many different semiconductors. Typical dots are made of binary compounds such as lead sulfide, lead selenide, cadmium selenide, cadmium sulfide, indium arsenide, and indium phosphide. Dots may also be made from ternary compounds such as cadmium selenide sulfide. These quantum dots can contain as few as 100 to 100,000 atoms within the quantum dot volume, with a diameter of ~ 10 to 50 atoms. This corresponds to about 2 to 10 nanometers, and at 10 nm in diameter, nearly 3 million quantum dots could be lined up end to end and fit within the width of a human thumb.

Colloidal nanoparticle of lead sulfide (selenide) with complete passivation by oleic acid, oleyl and hydroxyl (size ~5nm)

Large batches of quantum dots may be synthesized via colloidal synthesis. Due to this scalability and the convenience of benchtop conditions, colloidal synthetic methods are promising for commercial applications. It is acknowledged to be the least toxic of all the different forms of synthesis.

Plasma synthesis

Plasma synthesis has evolved to be one of the most popular gas-phase approaches for the production of quantum dots, especially those with covalent bonds.[19][20][21] For example, silicon (Si) and germanium (Ge) quantum dots have been synthesized by using nonthermal plasma. The size, shape, surface and composition of quantum dots can all be controlled in nonthermal plasma.[22][23] Doping that seems quite challenging for quantum dots has also been realized in plasma synthesis.[24][25][26] Quantum dots synthesized by plasma are usually in the form of powder, for which surface modification may be carried out. This can lead to excellent dispersion of quantum dots in either organic solvents[27] or water[28] (i. e., colloidal quantum dots).


  • Self-assembled quantum dots are typically between 5 and 50 nm in size. Quantum dots defined by lithographically patterned gate electrodes, or by etching on two-dimensional electron gases in semiconductor heterostructures can have lateral dimensions between 20 and 100 nm.
  • Some quantum dots are small regions of one material buried in another with a larger band gap. These can be so-called core–shell structures, e.g., with CdSe in the core and ZnS in the shell or from special forms of silica called ormosil.
  • Quantum dots sometimes occur spontaneously in quantum well structures due to monolayer fluctuations in the well's thickness.
  • Self-assembled quantum dots nucleate spontaneously under certain conditions during strain produces coherently strained islands on top of a two-dimensional wetting layer. This growth mode is known as Stranski–Krastanov growth. The islands can be subsequently buried to form the quantum dot. This fabrication method has potential for applications in quantum cryptography (i.e. single photon sources) and quantum computation. The main limitations of this method are the cost of fabrication and the lack of control over positioning of individual dots.
  • Individual quantum dots can be created from two-dimensional electron or hole gases present in remotely doped quantum wells or semiconductor heterostructures called lateral quantum dots. The sample surface is coated with a thin layer of resist. A lateral pattern is then defined in the resist by electron beam lithography. This pattern can then be transferred to the electron or hole gas by etching, or by depositing metal electrodes (lift-off process) that allow the application of external voltages between the electron gas and the electrodes. Such quantum dots are mainly of interest for experiments and applications involving electron or hole transport, i.e., an electrical current.
  • The energy spectrum of a quantum dot can be engineered by controlling the geometrical size, shape, and the strength of the confinement potential. Also, in contrast to atoms, it is relatively easy to connect quantum dots by tunnel barriers to conducting leads, which allows the application of the techniques of tunneling spectroscopy for their investigation.

The quantum dot absorption features correspond to transitions between discrete,three-dimensional particle in a box states of the electron and the hole, both confined to the same nanometer-size box.These discrete transitions are reminiscent of atomic spectra and have resulted in quantum dots also being called artificial atoms.[29]

  • Confinement in quantum dots can also arise from electrostatic potentials (generated by external electrodes, doping, strain, or impurities).
  • CMOS technology can be employed to fabricate silicon quantum dots. Ultra small (L=20 nm, W=20 nm) CMOS transistors behave as single electron quantum dots when operated at cryogenic temperature over a range of −269 °C (4 K) to about −258 °C (15 K). The transistor displays Coulomb blockade due to progressive charging of electrons one by one. The number of electrons confined in the channel is driven by the gate voltage, starting from an occupation of zero electrons, and it can be set to 1 or many.[30]

Viral assembly

Lee et al. (2002) reported using nanocrystals, forming ordered arrays over the length scale defined by liquid crystal formation. Using this information, Lee et al. (2000) were able to create self-assembled, highly oriented, self-supporting films from a phage and ZnS precursor solution. This system allowed them to vary both the length of bacteriophage and the type of inorganic material through genetic modification and selection.

Electrochemical assembly

Highly ordered arrays of quantum dots may also be self-assembled by electrochemical techniques. A template is created by causing an ionic reaction at an electrolyte-metal interface which results in the spontaneous assembly of nanostructures, including quantum dots, onto the metal which is then used as a mask for mesa-etching these nanostructures on a chosen substrate.


Quantum dot manufacturing relies on a process called "high temperature dual injection" which has been scaled by multiple companies for commercial applications that require large quantities (hundreds of kilograms to tonnes) of quantum dots. This is a reproducible production method that can be applied to a wide range of quantum dot sizes and compositions.

The bonding in certain cadmium-free quantum dots, such as III-V-based quantum dots, is more covalent than that in II-VI materials, therefore it is more difficult to separate nanoparticle nucleation and growth via a high temperature dual injection synthesis. An alternative method of quantum dot synthesis, the “molecular seeding” process, provides a reproducible route to the production of high quality quantum dots in large volumes. The process utilises identical molecules of a molecular cluster compound as the nucleation sites for nanoparticle growth, thus avoiding the need for a high temperature injection step. Particle growth is maintained by the periodic addition of precursors at moderate temperatures until the desired particle size is reached.[33] The molecular seeding process is not limited to the production of cadmium-free quantum dots; for example, the process can be used to synthesise kilogram batches of high quality II-VI quantum dots in just a few hours.

Another approach for the mass production of colloidal quantum dots can be seen in the transfer of the well-known hot-injection methodology for the synthesis to a technical continuous flow system. The batch-to-batch variations arising from the needs during the mentioned methodology can be overcome by utilizing technical components for mixing and growth as well as transport and temperature adjustments. For the production of CdSe based semiconductor nanoparticles this method has been investigated and tuned to production amounts of kg per month. Since the use of technical components allows for easy interchange in regards of maximum through-put and size, it can be further enhanced to tens or even hundreds of kilograms.[34]

In 2011 a consortium of U.S. and Dutch companies reported a "milestone" in high volume quantum dot manufacturing by applying the traditional high temperature dual injection method to a flow system.[35]

On January 23, 2013 Dow entered into an exclusive licensing agreement with UK-based Nanoco for the use of their low-temperature molecular seeding method for bulk manufacture of cadmium-free quantum dots for electronic displays, and on September 24, 2014 Dow commenced work on the production facility in South Korea capable of producing sufficient quantum dots for "millions of cadmium-free televisions and other devices, such as tablets". Mass production is due to commence in mid-2015.[36] On 24 March 2015 Dow announced a partnership deal with LG Electronics to develop the use of cadmium free quantum dots in displays.[37]

Heavy metal-free quantum dots

In many regions of the world there is now a restriction or ban on the use of heavy metals in many household goods, which means that most cadmium based quantum dots are unusable for consumer-goods applications.

For commercial viability, a range of restricted, heavy metal-free quantum dots has been developed showing bright emissions in the visible and near infra-red region of the spectrum and have similar optical properties to those of CdSe quantum dots. Among these systems are InP/ZnS and CuInS/ZnS, for example.

Peptides are being researched as potential quantum dot material.[38] Since peptides occur naturally in all organisms, such dots would likely be nontoxic and easily biodegraded.

Environmental impact

The environmental impact of bulk manufacturing and consumption of quantum dots is currently undergoing studies in both private and public labs.

Optical properties

Fluorescence spectra of CdTe quantum dots of various sizes. Different sized quantum dots emit different color light due to quantum confinement.

In semiconductors, light absorption generally leads to an electron being excited from the valence to the conduction band, leaving behind a hole. The electron and the hole can bind to each other to form an exciton. When this exciton recombines (i.e. the electron resumes its ground state), the excitons energy can be emitted as light, this is called Fluorescence. In a simplified model, the energy of the emitted photon can be understood as the sum of the band gap energy between the highest occupied level and the lowest unoccupied energy level, the confinement energies of the hole and the excited electron, and the bound energy of the exciton (the electron-hole pair):

the figure is a simplified representation showing the excited electron and the hole in an exciton entity and the corresponding energy levels. The total energy involved can be seen as the sum of the band gap energy, the energy involved in the Coulomb attraction in the exciton, and the confinement energies of the excited electron and the hole

As the confinement energy depends on the quantum dots size, both absorption onset and fluorescence emission can be tuned by changing the size of the quantum dot during its synthesis. The larger the dot, the redder (lower energy) its absorption onset and fluorescence spectrum. Conversely , smaller dots absorb and emit bluer (higher energy) light. Recent articles in Nanotechnology and in other journals have begun to suggest that the shape of the quantum dot may be a factor in the coloration as well, but as yet not enough information is available. Furthermore, it was shown [39] that the lifetime of fluorescence is determined by the size of the quantum dot. Larger dots have more closely spaced energy levels in which the electron-hole pair can be trapped. Therefore, electron-hole pairs in larger dots live longer causing larger dots to show a longer lifetime.

To improve fluorescence quantum yield, quantum dots can be made with "shells" of a larger bandgap semiconductor material around them. The improvement is suggested to be due to the reduced access of electron and hole to non-radiative surface recombination pathways in some cases, but also due to reduced auger recombination in others.


Quantum dots are particularly significant for optical applications due to their high extinction coefficient.[40] In electronic applications they have been proven to operate like a single electron transistor and show the Coulomb blockade effect. Quantum dots have also been suggested as implementations of qubits for quantum information processing.

The ability to tune the size of quantum dots is advantageous for many applications. For instance, larger quantum dots have a greater spectrum-shift towards red compared to smaller dots, and exhibit less pronounced quantum properties. Conversely, the smaller particles allow one to take advantage of more subtle quantum effects.

Researchers at Los Alamos National Laboratory have developed a device that efficiently produces visible light, through energy transfer from thin layers of quantum wells to crystals above the layers.[41]

Being zero-dimensional, quantum dots have a sharper density of states than higher-dimensional structures. As a result, they have superior transport and optical properties, and are being researched for use in diode lasers, amplifiers, and biological sensors. Quantum dots may be excited within a locally enhanced electromagnetic field produced by gold nanoparticles, which can then be observed from the surface plasmon resonance in the photoluminescent excitation spectrum of (CdSe)ZnS nanocrystals. High-quality quantum dots are well suited for optical encoding and multiplexing applications due to their broad excitation profiles and narrow/symmetric emission spectra. The new generations of quantum dots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.


Quantum dot technology is one of the most promising candidates for use in solid-state quantum computation. By applying small voltages to the leads, the flow of electrons through the quantum dot can be controlled and thereby precise measurements of the spin and other properties therein can be made. With several entangled quantum dots, or qubits, plus a way of performing operations, quantum calculations and the computers that would perform them might be possible.


In modern biological analysis, various kinds of

  • Quantum Dots: Technical Status and Market Prospects
  • Quantum dots that produce white light could be the light bulb's successor
  • Single quantum dots optical properties
  • Quantum dot on
  • Quantum Dots Research and Technical Data

External links

  1. ^
  2. ^
  3. ^ a b
  4. ^
  5. ^
  6. ^ Bullis, Kevin. (2013-01-11) Quantum Dots Produce More Colorful Sony TVs | MIT Technology Review. Retrieved on 2015-07-19.
  7. ^
  8. ^
  9. ^
  10. ^ E. V. Kolobkova, N. V. Nikonorov, V. A. Aseev, "Optical Technologies Silver Nanoclusters Influence on Formation of Quantum Dots in Fluorine Phosphate Glasses", Scientific and Technical Journal of Information Technologies, Mechanics and Optics, Volume 5, Number 12, 2012
  11. ^
  12. ^
  13. ^
  14. ^
  15. ^
  16. ^
  17. ^
  18. ^ a b
  19. ^ Mangolini, L.; Thimsen, E.; Kortshagen, U. (2005) "High-yield plasma synthesis of luminescent silicon nanocrystals". Nano Letters 5, 655-659.
  20. ^ Knipping, J.; Wiggers, H.; Rellinghaus, B.; Roth, P.; Konjhodzic, D.; Meier, C. (2004) "Synthesis of high purity silicon nanoparticles in a low Pressure microwave reactor". Journal of Nanoscience and Technology 4, 1039-1044.
  21. ^ Sankaran, R. M.; Holunga, D.; Flagan, R. C.; Giapis, K. P. (2005)"Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges". Nano Letters 5, 537-541.
  22. ^ Kortshagen, U. (2009) "Nonthermal plasma synthesis of semiconductor nanocrystals". J. Phys. D: Appl. Phys. 42 113001.
  23. ^ Pi, X. D.; Kortshagen, U. (2009) "Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals". Nanotechnology 20, 295602.
  24. ^ Pi, X. D.; Gresback, R.; Liptak, R. W.; Campbell, S. A.; Kortshagen, U. (2008) "Doping efficiency, dopant location, and oxidation of Si nanocrystals". Applied Physics Letters 92, 123102.
  25. ^ Ni, Z. Y.; Pi, X. D.; Ali, M.; Zhou, S.; Nozaki, T.; Yang, D. (2015) "Freestanding doped silicon nanocrystals synthesized by plasma". J. Phys. D: Appl. Phys. 48, 314006.
  26. ^ Pereira, R. N.; Almeida, A. J. (2015) "Doped semiconductor nanoparticles synthesized in gas-phase plasmas". J. Phys. D: Appl. Phys. 48, 314005.
  27. ^ Mangolini, L.; Kortshagen, U. (2007) "Plasma-assisted synthesis of silicon nanocrystal inks". Advanced Materials 19, 2513–2519.
  28. ^ Pi, X. D.; Yu, T.; Yang, D. (2014) "Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer". Part. Part. Syst. Charact. 31, 751–756.
  29. ^
  30. ^
  31. ^
  32. ^
  33. ^
  34. ^ Continuous Flow Synthesis Method for Fluorescent Quantum Dots. (2013-06-01). Retrieved on 2015-07-19.
  35. ^
  36. ^
  37. ^
  38. ^
  39. ^
  40. ^
  41. ^
  42. ^ a b
  43. ^
  44. ^
  45. ^
  46. ^
  47. ^
  48. ^
  49. ^
  50. ^
  51. ^
  52. ^
  53. ^ a b
  54. ^
  55. ^
  56. ^
  57. ^
  58. ^
  59. ^
  60. ^
  61. ^
  62. ^
  63. ^
  64. ^
  65. ^
  66. ^
  67. ^
  68. ^
  69. ^
  70. ^
  71. ^
  72. ^
  73. ^


See also

The classical treatment of both two-dimensional and three-dimensional quantum dots exhibit electron shell-filling behavior. A "periodic table of classical artificial atoms" has been described for two-dimensional quantum dots.[71] As well, several connections have been reported between the three-dimensional Thomson problem and electron shell-filling patterns found in naturally-occurring atoms found throughout the periodic table.[72] This latter work originated in classical electrostatic modeling of electrons in a spherical quantum dot represented by an ideal dielectric sphere.[73]

The classical electrostatic treatment of electrons confined to spherical quantum dots is similar to their treatment in the Thomson,[69] or plum pudding model, of the atom.[70]

Classical models of electrostatic properties of electrons in quantum dots are similar in nature to the Thomson problem of optimally distributing electrons on a unit sphere.

Classical mechanics

is the "quantum capacitance" of a quantum dot, where we denoted by I(N) the ionization potential and by A(N) the electron affinity of the N-particle system.[68]

C(N) = {e^2\over\mu(N+1)-\mu(N)} = {e^2 \over I(N)-A(N)}


\Delta \,N = 1 and \Delta \,Q=e.

may be applied to a quantum dot with the addition or removal of individual electrons,

\Delta \,V = {\Delta \,\mu \,\over e} = {\mu(N+\Delta \,N) -\mu(N) \over e}

with the potential difference

{1\over C} \equiv {\Delta \,V\over\Delta \,Q},

whose energy terms may be obtained as solutions of the Schrödinger equation. The definition of capacitance,

\mu(N) = E(N) - E(N-1)

Semiclassical models of quantum dots frequently incorporate a chemical potential. For example, The thermodynamic chemical potential of an N-particle system is given by


Quantum mechanical models and simulations of quantum dots often involve the interaction of electrons with a pseudopotential or random matrix.[67]

Quantum mechanics

A variety of theoretical frameworks exist to model optical, electronic, and structural properties of quantum dots. These may be broadly divided into quantum mechanical, semiclassical, and classical.

Theoretical models

Quantum dots also function as photocatalysts for the light driven chemical conversion of water into hydrogen as a pathway to solar fuel. In photocatalysis, electron hole pairs formed in the dot under band gap excitation drive redox reactions in the surrounding liquid. Generally, the photocatalytic activity of the dots is related to the particle size and its degree of quantum confinement.[66] This is because the band gap determines the chemical energy that is stored in the dot in the excited state. An obstacle for the use of quantum dots in photocatalysis is the presence of surfactants on the surface of the dots. These surfactants (or ligands) interfere with the chemical reactivity of the dots by slowing down mass transfer and electron transfer processes. Also, quantum dots made of metal chalcogenides are chemically unstable under oxidizing conditions and undergo photo corrosion reactions.


Quantum dot photodetectors (QDPs) can be fabricated either via solution-processing,[64] or from conventional single-crystalline semiconductors.[65] Conventional single-crystalline semiconductor QDPs are precluded from integration with flexible organic electronics due to the incompatibility of their growth conditions with the process windows required by organic semiconductors. On the other hand, solution-processed QDPs can be readily integrated with an almost infinite variety of substrates, and also postprocessed atop other integrated circuits. Such colloidal QDPs have potential applications in surveillance, machine vision, industrial inspection, spectroscopy, and fluorescent biomedical imaging.

Photodetector devices

In June 2006, QD Vision announced technical success in making a proof-of-concept quantum dot display and show a bright emission in the visible and near infra-red region of the spectrum. A QD-LED integrated at a scanning microscopy tip was used to demonstrate fluorescence near-field scanning optical microscopy (NSOM) imaging.[63]

There are several proposed methods for using quantum dots to improve existing light-emitting diode (LED) design, including "Quantum Dot Light Emitting Diode" (QD-LED) displays and "Quantum Dot White Light Emitting Diode" (QD-WLED) displays. Because Quantum dots naturally produce monochromatic light, they can be more efficient than light sources which must be color filtered. QD-LEDs can be fabricated on a silicon substrate, which allows them to be integrated onto standard silicon-based integrated circuits or microelectromechanical systems.[62] Quantum dots are valued for displays, because they emit light in very specific gaussian distributions. This can result in a display with visibly more accurate colors. A conventional color liquid crystal display (LCD) is usually backlit by fluorescent lamps (CCFLs) or conventional white LEDs that are color filtered to produce red, green, and blue pixels. An improvement is using a conventional blue-emitting LED as light source and converting part of the emitted light into pure green and red light by the appropriate quantum dots placed in front of the blue LED. This type of white light as the backlight of an LCD panel allows for the best color gamut at lower cost than a RGB LED combination using three LEDs.

Light emitting devices

Quantum dots may be able to increase the efficiency and reduce the cost of today's typical silicon photovoltaic cells. According to an experimental proof from 2004,[61] quantum dots of lead selenide can produce more than one exciton from one high energy photon via the process of carrier multiplication or multiple exciton generation (MEG). This compares favorably to today's photovoltaic cells which can only manage one exciton per high-energy photon, with high kinetic energy carriers losing their energy as heat. Quantum dot photovoltaics would theoretically be cheaper to manufacture, as they can be made "using simple chemical reactions."

Photovoltaic devices

Delivery of undamaged quantum dots to the cell cytoplasm has been a challenge with existing techniques. Vector-based methods have resulted in aggregation and endosomal sequestration of quantum dots while electroporation can damage the semi-conducting particles and aggregate delivered dots in the cytosol. Cell squeezing – a method invented in 2013 by Armon Sharei, Robert Langer and Klavs Jensen at MIT – has demonstrated efficient cytosolic delivery of quantum dots without inducing aggregation, trapping material in endosomes, or significant loss of cell viability. Moreover, it has shown that individual quantum dots delivered by this approach are detectable in the cell cytosol, thus illustrating the potential of this technique for single molecule tracking studies. These results indicate that Cell squeezing could potentially be implemented as a robust platform for quantum dot based imaging in a variety of applications.[60]

Another potential cutting-edge application of quantum dots is being researched, with quantum dots acting as the inorganic fluorophore for intra-operative detection of tumors using fluorescence spectroscopy.

[59] One of the remaining issues with quantum dot probes is their potential in vivo toxicity. For example, CdSe nanocrystals are highly toxic to cultured cells under UV illumination. The energy of UV irradiation is close to that of the

First attempts have been made to use quantum dots for tumor targeting under in vivo conditions. There exist two basic targeting schemes: active targeting and passive targeting. In the case of active targeting, quantum dots are functionalized with tumor-specific binding sites to selectively bind to tumor cells. Passive targeting uses the enhanced permeation and retention of tumor cells for the delivery of quantum dot probes. Fast-growing tumor cells typically have more permeable membranes than healthy cells, allowing the leakage of small nanoparticles into the cell body. Moreover, tumor cells lack an effective lymphatic drainage system, which leads to subsequent nanoparticle-accumulation.

Scientists have proven that quantum dots are dramatically better than existing methods for delivering a gene-silencing tool, known as siRNA, into cells.[57]

One particular application of Quantum dots in biology is as donor fluorophores in Förster resonance energy transfer, where the large extinction coefficient and spectral purity of these fluorophores make them superior to molecular fluorophores[54] It is also worth noting that the broad absorbance of QDs allows selective excitation of the QD donor and a minimum excitation of a dye acceptor in FRET-based studies.[55] The applicability of the FRET model, which assumes that the Quantum Dot can be approximated as a point dipole, has recently been demonstrated[56]

Semiconductor quantum dots have also been employed for in vitro imaging of pre-labeled cells. The ability to image single-cell migration in real time is expected to be important to several research areas such as embryogenesis, cancer metastasis, stem cell therapeutics, and lymphocyte immunology.

The usage of quantum dots for highly sensitive cellular imaging has seen major advances over the past decade.[46] The improved photostability of quantum dots, for example, allows the acquisition of many consecutive focal-plane images that can be reconstructed into a high-resolution three-dimensional image.[47] Another application that takes advantage of the extraordinary photostability of quantum dot probes is the real-time tracking of molecules and cells over extended periods of time.[48] Antibodies, streptavidin,[49] peptides,[50] DNA,[51] nucleic acid aptamers,[52] or small-molecule ligands [18] can be used to target quantum dots to specific proteins on cells. Researchers were able to observe quantum dots in lymph nodes of mice for more than 4 months.[53]

[45][44] is a minor drawback. However there have been groups which have developed quantum dots which are essentially nonblinking and demonstated their utility in single molecule tracking experiments.blinking of quantum dots For single-particle tracking, the irregular [42]). It has been estimated that quantum dots are 20 times brighter and 100 times more stable than traditional fluorescent reporters.photobleaching) as well as their stability (allowing much less [43]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.