World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000335376
Reproduction Date:

Title: Rs-422  
Author: World Heritage Encyclopedia
Language: English
Subject: RS-485, Serial port, Apple Desktop Bus, UEXT, Atari MEGA STE
Collection: Serial Buses
Publisher: World Heritage Encyclopedia


Standard TIA/EIA-422
Physical Media Twisted Pair
Network Topology Point-to-point, Multi-dropped
Maximum Devices 10 (1 driver & 10 receivers)
Maximum Distance 1500 metres (4,900 ft)
Mode of Operation Differential
Maximum Binary Rate 100 kbit/s – 10 Mbit/s
Voltage Levels −6V to +6V (maximum differential Voltage)
Mark (1) Negative Voltages
Space (0) Positive voltages
Available Signals Tx+, Tx-, Rx+, Rx- (Full Duplex)
Connector types Not specified

RS-422, also known as TIA/EIA-422, is a technical standard originated by the Electronic Industries Alliance that specifies electrical characteristics of a digital signaling circuit. Differential signaling can transmit data at rates as high as 10 Mbit/s, or may be sent on cables as long as 1500 meters. Some systems directly interconnect using RS-422 signals, or RS-422 converters may be used to extend the range of RS-232 connections. The standard only defines signal levels; other properties of a serial interface, such as electrical connectors and pin wiring, are set by other standards.


  • Standard scope 1
  • Characteristics 2
  • Applications 3
  • See also 4
  • References 5
  • External links 6

Standard scope

RS-422 is the common short form title of American National Standards Institute (ANSI) standard ANSI/TIA/EIA-422-B Electrical Characteristics of Balanced Voltage Differential Interface Circuits and its international equivalent ITU-T Recommendation T-REC-V.11,[1] also known as X.27. These technical standards specify the electrical characteristics of the balanced voltage digital interface circuit.[2] RS-422 provides for data transmission, using balanced, or differential, signaling, with unidirectional/non-reversible, terminated or non-terminated transmission lines, point to point, or multi-drop. In contrast to EIA-485 (which is multi-point instead of multi-drop), RS-422/V.11 does not allow multiple drivers but only multiple receivers.

Revision B, published in May 1994 was reaffirmed by the Telecommunications Industry Association in 2005.


Data Rate / Line Length chart from RS-422 Annex A

Several key advantages offered by this standard include the differential receiver, a differential driver and data rates as high as 10 Megabits per second at 12 meters (40 ft). The specification is for circuits with a data rate up to 10 Mbit/s, but since the signal quality degrades with cable length, the maximum data rate decreases as cable length increases. Figure A.1 in the annex plotting this stops at 10 Mbit/s.

The maximum cable length is not specified in the standard, but guidance is given in its annex. (This annex is not a formal part of the standard, but is included for information purposes only.) Limitations on line length and data rate varies with the parameters of the cable length, balance, and termination, as well as the individual installation. Figure A.1 shows a maximum length of 1200 meters, but this is with a termination and the annex discusses the fact that many applications can tolerate greater timing and amplitude distortion, and that experience has shown that the cable length may be extended to several kilometers. Conservative maximum data rates with 24AWG UTP (POTS) cable are 10 Mbit/s at 12 m to 90 kbit/s at 1200 m as shown in the figure A.1. This figure is a conservative guide based on empirical data, not a limit imposed by the standard.

RS-422 specifies the electrical characteristics of a single balanced signal. The standard was written to be referenced by other standards that specify the complete DTE/DCE interface for applications which require a balanced voltage circuit to transmit data. These other standards would define protocols, connectors, pin assignments and functions. Standards such as EIA-530 (DB-25 connector) and EIA-449 (DC-37 connector) use RS-422 electrical signals. Some RS-422 devices have 4 screw terminals for pairs of wire, with one pair used for data in one direction.

RS-422 cannot implement a true multi-point communications network such as with EIA-485 since there can be only one driver on each pair of wires, however one driver can be connected to up to ten receivers.

RS-422 can interoperate with interfaces designed to MIL-STD-188-114B, but they are not identical. RS-422 uses a nominal 0 to 5 volt signal while MIL-STD-188-114B uses a signal symmetric about 0 V. However the tolerance for common mode voltage in both specifications allows them to interoperate. Care must be taken with the termination network.

EIA-423 is a similar specification for unbalanced signaling (RS-423).


A common use of RS-422 is for RS-232 extenders.

An RS-232-compatible variant of RS-422 using a mini-DIN-8 connector was widely used on Macintosh hardware until it (and ADB) were replaced by Universal Serial Bus on the iMac in 1998.

Broadcast automation systems and post-production linear editing facilities use RS-422A to remotely control the players/recorders located in the central apparatus room. In most cases the Sony 9-pin connection is used, which makes use of a standard DE-9 connector. This is a de facto industry standard connector for RS-422 used by many manufacturers.

When used in relation to communications wiring, RS-422 wiring refers to cable made of 2 sets of twisted pair, often with each pair being shielded, and a ground wire. While a double pair cable may be practical for many RS-422 applications, the RS-422 specification only defines one signal path and does not assign any function to it. Any complete cable assembly with connectors should be labeled with the specification that defined the signal function and mechanical layout of the connector, such as RS-449.

See also


This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.

  1. ^ V.11 ITU Recommendation T-REC-V.11
  2. ^ TIA/EIA STANDARD, Electrical Characteristics of Balanced Voltage Digital Interface Circuits, TIA/EIA-422-B, May 1994

External links

  • The Telecommunications Industry Association
  • National Semiconductor Application Note AN-1031 "TIA/EIA-422-B Overview", January 2000, National Semiconductor Inc., retrieved from [1]
  • National Semiconductor Application Note AN-759 "Comparing EIA-485 and EIA-422-A Line Drivers and Receivers in Multipoint Applications", February 1991, National Semiconductor Inc., retrieved from [2]
  • National Semiconductor Application Note AN-214 "Transmission Line Drivers and Receivers or TIA/EIA Standards RS-422 and RS-423" August 1993, National Semiconductor Inc., retrieved from [3]
  • Maxim IC Application Note 723 "Selecting and Using RS-232, RS-422, and RS-485 Serial Data Standards" Dec 2000,

Maxim Integrated Products, Inc., retrieved from [4]

  • Texas Instruments Application Report "422 and 485 Standards Overview and System Configurations" June 2002, Texas Instruments, retrieved from [5]
  • Texas Instruments Application Report SLLA067B "Comparing Bus Solutions" October 2009, Texas Instruments, retrieved from [6]
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.