Radiation hardened

Not to be confused with hard radiation.

Radiation hardening is the act of making electronic components and systems resistant to damage or malfunctions caused by ionizing radiation (particle radiation and high-energy electromagnetic radiation),[1] such as those encountered in outer space, high-altitude flight, around nuclear reactors, particle accelerators, during nuclear accidents or nuclear warfare.

Most semiconductor electronic components are susceptible to radiation damage; radiation-hardened components are based on their commercial equivalents, with some design and manufacturing variations that reduce the susceptibility to radiation damage. Due to the extensive development and testing required to produce a radiation-tolerant design of a microelectronic chip, radiation-hardened chips tend to lag behind the most recent developments.

Problems caused by radiation

Environments with high levels of ionizing radiation create special design challenges. A single charged particle can knock thousands of electrons loose, causing electronic noise and signal spikes. In the case of digital circuits, this can cause results which are inaccurate or unintelligible. This is a particularly serious problem in the design of artificial satellites, spacecraft, military aircraft, nuclear power stations, and nuclear weapons. In order to ensure the proper operation of such systems, manufacturers of integrated circuits and sensors intended for the military or aerospace markets employ various methods of radiation hardening. The resulting systems are said to be rad(iation)-hardened, rad-hard, or (within context) hardened.

Major radiation damage sources

Typical sources of exposure of electronics to ionizing radiation are the Van Allen radiation belts for satellites, nuclear reactors in power plants for sensors and control circuits, particle accelerators for control electronics particularly particle detector devices, residual radiation from isotopes in chip packaging materials, cosmic radiation for spacecraft and high-altitude aircraft, and nuclear explosions for potentially all military and civilian electronics.

  • Cosmic rays come from all directions and consist of approximately 85% protons, 14% alpha particles, and 1% heavy ions, together with x-ray and gamma-ray radiation. Most effects are caused by particles with energies between 108 and 2*1010 eV. The atmosphere filters most of these, so they are primarily a concern for spacecraft and high-altitude aircraft.
  • Solar particle events come from the direction of the sun and consist of a large flux of high-energy (several GeV) protons and heavy ions, again accompanied by x-ray radiation.
  • Van Allen radiation belts contain electrons (up to about 10 MeV) and protons (up to 100s MeV) trapped in the geomagnetic field. The particle flux in the regions farther from the Earth can vary wildly depending on the actual conditions of the sun and the magnetosphere. Due to their position they pose a concern for satellites.
  • Secondary particles result from interaction of other kinds of radiation with structures around the electronic devices.
  • Particle accelerators produce high energy protons and electrons, and the secondary particles produced by their interactions product significant radiation damage on sensitive control and particle detector components, of the order of magnitude of 10 MRad[Si]/year for systems such as the Large Hadron Collider.
  • Nuclear explosions produce a short and extremely intense surge through a wide spectrum of electromagnetic radiation, an electromagnetic pulse (EMP), neutron radiation, and a flux of both primary and secondary charged particles. In case of a nuclear war they pose a potential concern for all civilian and military electronics.
  • Chip packaging materials were an insidious source of radiation that was found to be causing soft errors in new DRAM chips in the 1970s. Traces of radioactive elements in the packaging of the chips were producing alpha particles, which were then occasionally discharging some of the capacitors used to store the DRAM data bits. These effects have been reduced today by using purer packaging materials, and employing error-correcting codes to detect and often correct DRAM errors.

Radiation effects on electronics

Fundamental mechanisms

Two fundamental damage mechanisms take place:

  • Lattice displacement, caused by neutrons, protons, alpha particles, heavy ions, and very high energy gamma photons. They change the arrangement of the atoms in the crystal lattice, creating lasting damage, and increasing the number of recombination centers, depleting the minority carriers and worsening the analog properties of the affected semiconductor junctions. Counterintuitively, higher doses over short time cause partial annealing ("healing") of the damaged lattice, leading to a lower degree of damage than with the same doses delivered in low intensity over a long time. This type of problem is particularly significant in bipolar transistors, which are dependent on minority carriers in their base regions; increased losses caused by recombination cause loss of the transistor gain (see neutron effects).
  • Ionization effects are caused by charged particles, including the ones with energy too low to cause lattice effects. The ionization effects are usually transient, creating glitches and soft errors, but can lead to destruction of the device if they trigger other damage mechanisms (e.g. a latchup). Photocurrent caused by ultraviolet and x-ray radiation may belong to this category as well. Gradual accumulation of holes in the oxide layer in MOSFET transistors leads to worsening of their performance, up to device failure when the dose is high enough (see total ionizing dose effects).

The effects can vary wildly depending on all the parameters - type of radiation, total dose and radiation flux, combination of types of radiation, and even the kind of device load (operating frequency, operating voltage, actual state of the transistor during the instant it is struck by the particle), which makes thorough testing difficult, time consuming, and requiring a lot of test samples.

Resultant effects

The "end-user" effects can be characterized in several groups:

  • Neutron effects: A neutron interacting with the semiconductor lattice will displace its atoms. This leads to an increase in the count of recombination centers and deep-level defects, reducing the lifetime of minority carriers, thus affecting bipolar devices more than CMOS ones. Bipolar devices on silicon tend to show changes in electrical parameters at levels of 1010 to 1011 neutrons/cm², CMOS devices aren't affected until 1015 neutrons/cm². The sensitivity of the devices may increase together with increasing level of integration and decreasing size of individual structures. There is also a risk of induced radioactivity caused by neutron activation, which is a major source of noise in high energy astrophysics instruments. Induced radiation, together with residual radiation from impurities in used materials, can cause all sorts of single-event problems during the device's lifetime. GaAs LEDs, common in optocouplers, are very sensitive to neutrons. The lattice damage influences the frequency of crystal oscillators. Kinetic energy effects (namely lattice displacement) of charged particles belong here too.
  • Total ionizing dose effects: The cumulative damage of the semiconductor lattice (lattice displacement damage) caused by ionizing radiation over the exposition time. It is measured in rads and causes slow gradual degradation of the device's performance. A total dose greater than 5000 rads delivered to silicon-based devices in seconds to minutes will cause long-term degradation. In CMOS devices, the radiation creates electron–hole pairs in the gate insulation layers, which cause photocurrents during their recombination, and the holes trapped in the lattice defects in the insulator create a persistent gate biasing and influence the transistors' threshold voltage, making the N-type MOSFET transistors easier and the P-type ones more difficult to switch on. The accumulated charge can be high enough to keep the transistors permanently open (or closed), leading to device failure. Some self-healing takes place over time, but this effect is not too significant. This effect is the same as hot carrier degradation in high-integration high-speed electronics. Crystal oscillators are somewhat sensitive to radiation doses, which alter their frequency. The sensitivity can be greatly reduced by using swept quartz. Natural quartz crystals are especially sensitive.
  • Transient dose effects: The short-time high-intensity pulse of radiation, typically occurring during a nuclear explosion. The high radiation flux creates photocurrents in the entire body of the semiconductor, causing transistors to randomly open, changing logical states of flip-flops and memory cells. Permanent damage may occur if the duration of the pulse is too long, or if the pulse causes junction damage or a latchup. Latchups are commonly caused by the x-rays and gamma radiation flash of a nuclear explosion. Crystal oscillators may stop oscillating for the duration of the flash due to prompt photoconductivity induced in quartz.
  • Single-event effects (SEE) are phenomena affecting mostly digital devices (see the following section for an overview of the various types of SEE).

Digital damage: SEE

Single-event effects (SEE), mostly affecting only digital devices, were not studied extensively until relatively recently. When a high-energy particle travels through a semiconductor, it leaves an ionized track behind. This ionization may cause a highly localized effect similar to the transient dose one - a benign glitch in output, a less benign bit flip in memory or a register or, especially in high-power transistors, a destructive latchup and burnout. Single event effects have importance for electronics in satellites, aircraft, and other civilian and military aerospace applications. Sometimes, in circuits not involving latches, it is helpful to introduce RC time constant circuits that slow down the circuit's reaction time beyond the duration of an SEE.

  • Single-event upsets (SEU) or transient radiation effects in electronics are state changes of memory or register bits caused by a single ion interacting with the chip. They do not cause lasting damage to the device, but may cause lasting problems to a system which cannot recover from such an error. In very sensitive devices, a single ion can cause a multiple-bit upset (MBU) in several adjacent memory cells. SEUs can become Single-event functional interrupts (SEFI) when they upset control circuits, such as state machines, placing the device into an undefined state, a test mode, or a halt, which would then need a reset or a power cycle to recover.
  • Single-event latchup (SEL) can occur in any chip with a parasitic PNPN structure. A heavy ion or a high-energy proton passing through one of the two inner-transistor junctions can turn on the thyristor-like structure, which then stays "shorted" (an effect known as latchup) until the device is power-cycled. As the effect can happen between the power source and substrate, destructively high current can be involved and the part may fail. Bulk CMOS devices are most susceptible.
  • Single-event transient (SET) happens when the charge collected from an ionization event discharges in the form of a spurious signal traveling through the circuit. This is de facto the effect of an electrostatic discharge.
  • Single-event snapback, similar to SEL but not requiring the PNPN structure, can be induced in N-channel MOS transistors switching large currents, when an ion hits near the drain junction and causes avalanche multiplication of the charge carriers. The transistor then opens and stays opened.
  • Single-event induced burnout (SEB) may occur in power MOSFETs when the substrate right under the source region gets forward-biased and the drain-source voltage is higher than the breakdown voltage of the parasitic structures. The resulting high current and local overheating then may destroy the device.
  • Single-event gate rupture (SEGR) was observed in power MOSFETs when a heavy ion hits the gate region while a high voltage is applied to the gate. A local breakdown then happens in the insulating layer of silicon dioxide, causing local overheat and destruction (looking like a microscopic explosion) of the gate region. It can occur even in EEPROM cells during write or erase, when the cells are subjected to a comparatively high voltage.

SEE Testing

While proton beams are widely used for SEE testing due to availability, at lower energies proton irradiation can often underestimate SEE susceptibility. Furthermore, proton beams expose devices to risk of total ionizing dose (TID) failure which can cloud proton testing results or result in pre-mature device failure. White neutron beams—while ostensibly the most representative SEE test method—are usually derived from solid target-based sources, resulting in flux non-uniformity and small beam areas. White neutron beams also have some measure of uncertainty in their energy spectrum, often with high thermal neutron content.

The disadvantages of both proton and spallation neutron sources can be avoided by using mono-energetic 14 MeV neutrons for SEE testing. A potential concern is that mono-energetic neutron-induced single event effects will not accurately represent the real-world effects of broad-spectrum atmospheric neutrons. However, recent studies have indicated that, to the contrary, mono-energetic neutrons—particularly 14 MeV neutrons—can be used to quite accurately understand SEE cross-sections in modern microelectronics.

A particular study of interest, performed in 2010 by Normand and Dominik,[2] powerfully demonstrates the effectiveness of 14 MeV neutrons.

The first devoted SEE testing Laboratory in Canada is currently being established in Southern Ontario under the name RE-Labs Inc..

Radiation-hardening techniques

  • Physical:
    • Hardened chips are often manufactured on insulating substrates instead of the usual semiconductor wafers. Silicon dioxide (SOI) and sapphire (SOS) are commonly used. While normal commercial-grade chips can withstand between 50 and 100 gray (5 and 10 krad), space-grade SOI and SOS chips can survive doses many orders of magnitude greater. At one time many 4000 series chips were available in radiation-hardened versions (RadHard).[3]
    • Bipolar integrated circuits generally have higher radiation tolerance than CMOS circuits. The low-power Schottky (LS) 5400 series can withstand 1000 krad, and many ECL devices can withstand 10 000 krad.[3]
    • Magnetoresistive RAM, or MRAM, is considered a likely candidate to provide radiation hardened, rewritable, non-volatile conductor memory. Physical principles and early tests suggest that MRAM is not susceptible to ionization-induced data loss.
    • Shielding the package against radioactivity, to reduce exposure of the bare device.
    • Capacitor-based DRAM is often replaced by more rugged (but larger, and more expensive) SRAM.
    • Choice of substrate with wide band gap, which gives it higher tolerance to deep-level defects; e.g. silicon carbide or gallium nitride.
    • Shielding the chips themselves by use of depleted boron (consisting only of isotope Boron-11) in the borophosphosilicate glass passivation layer protecting the chips, as boron-10 readily captures neutrons and undergoes alpha decay (see soft error).
  • Logical:
    • Error correcting memory uses additional parity bits to check for and possibly correct corrupted data. Since radiation effects damage the memory content even when the system is not accessing the RAM, a "scrubber" circuit must continuously sweep the RAM; reading out the data, checking the parity for data errors, then writing back any corrections to the RAM.
    • Redundant elements can be used at the system level. Three separate microprocessor boards may independently compute an answer to a calculation and compare their answers. Any system that produces a minority result will recalculate. Logic may be added such that if repeated errors occur from the same system, that board is shut down.
    • Redundant elements may be used at the circuit level.[4] A single bit may be replaced with three bits and separate "voting logic" for each bit to continuously determine its result. This increases area of a chip design by a factor of 5, so must be reserved for smaller designs. But it has the secondary advantage of also being "fail-safe" in real time. In the event of a single-bit failure (which may be unrelated to radiation), the voting logic will continue to produce the correct result without resorting to a watchdog timer. System level voting between three separate processor systems will generally need to use some circuit-level voting logic to perform the votes between the three processor systems.
    • Hardened latches may be used.[5]
    • A watchdog timer will perform a hard reset of a system unless some sequence is performed that generally indicates the system is alive, such as a write operation from an onboard processor. During normal operation, software schedules a write to the watchdog timer at regular intervals to prevent the timer from running out. If radiation causes the processor to operate incorrectly, it is unlikely the software will work correctly enough to clear the watchdog timer. The watchdog eventually times out and forces a hard reset to the system. This is considered a last resort to other methods of radiation hardening.

Nuclear hardness for telecommunication

In telecommunication, the term nuclear hardness has the following meanings:

  1. An expression of the extent to which the performance of a system, facility, or device is expected to degrade in a given nuclear environment.
  2. The physical attributes of a system or electronic component that will allow survival in an environment that includes nuclear radiation and electromagnetic pulses (EMP).


  1. Nuclear hardness may be expressed in terms of either susceptibility or vulnerability.
  2. The extent of expected performance degradation (e.g., outage time, data lost, and equipment damage) must be defined or specified. The environment (e.g., radiation levels, overpressure, peak velocities, energy absorbed, and electrical stress) must be defined or specified.
  3. The physical attributes of a system or component that will allow a defined degree of survivability in a given environment created by a nuclear weapon.
  4. Nuclear hardness is determined for specified or actual quantified environmental conditions and physical parameters, such as peak radiation levels, overpressure, velocities, energy absorbed, and electrical stress. It is achieved through design specifications and it is verified by test and analysis techniques.

See also

Electronics portal


Books and Reports

  • Holmes-Siedle, A. G. and Adams, L (2002). Handbook of Radiation Effects (Oxford University Press, England 2002). ISBN 0-19-850733-X
  • E.Leon Florian, H.Schonbacher and M.Tavlet (1993). Data compilation of dosimetry methods and radiation sources for material testing. Report No.CERN/TIS-CFM/IR/93-03. (CERN, Geneva, CH 1993).
  • T-P. Ma. and P.V. Dressendorfer (eds) (1989). Ionizing Radiation Effects in MOS Devices and Circuits. (John Wiley and Sons, New York 1989)
  • G. C. Messenger and M. S. Ash (1992).The effects of radiation on electronic systems” (Van Nostrand Reinhold, New York, 1992).
  • T.R. Oldham (Ed.) (2000). Ionizing radiation effects in MOS oxides.(World Scientific Publishing Co., USA, 2000). ISBN 981-02-3326-4.
  • D.G. Platteter (2006). Archive of Radiation Effects Short Course Notebooks (1980–2006), IEEE, ISBN 1-4244-0304-9.
  • R.D. Schrimpf and D.M. Fleetwood (eds) (2004) Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices (World Scientific 2004) ISBN 981-238-940-7.
  • D.K. Schroder, 'Semiconductor Material and Device Characterization' John Wiley & Sons, Inc., 1990.
  • J.H. Schulman and W.D. Compton (1963).Color Centers in Solids. (Pergamon, 1963).
  • V.A.J. van Lint and A.G. Holmes-Siedle (2000). Radiation effects in electronics in R.A. Meyers (ed), Encyclopedia of Physical Science and Technology, 3rd Edition. (Academic Press, New York. 2000)
  • V.A.J. Van Lint, T.M. Flanagan, R.E. Leadon, J.A. Naber and V.C. Rogers (1980). Mechanisms of Radiation Effects in Electronic Materials (Wiley, New York 1980).
  • G. D. Watkins (1986). In: “Deep Centers in Semiconductors”. Ed. S.T. Pantelides. (Gordon and Breach: New York, 1986) Chapter 3.
  • S.J.Watts, “ Overview of radiation damage in silicon detector- models and defect engineering, Nucl. Instr. and Meth. in Phys. Res. A, 386, 149-155,(1997).
  • J.F. Ziegler, J.P. Biersack, and U. Littmark (1985), The Stopping and Range of Ions in Solids, Volume 1, Pergamon Press, 1985.


  • link)

Examples of rad-hard computers

External links

  • (I)ntegrated Approach with COTS Creates Rad-Tolerant (SBC) for Space – By Chad Thibodeau, Maxwell Technologies; COTS Journal, Dec 2003
  • Sandia Labs to develop (...) radiation-hardened Pentium (...) for space and defense needs – Sandia press release, 8 Dec 1998
    (also includes a general "backgrounder" section on Sandia's manufacturing processes for radiation-hardening of microelectronics)
  • Honeywell Takes Rad-Hard to 0.15-Micron – By Jessica Davis, Electronic News, 19 Apr 2005
  • Radiation effects on quartz crystals
  • CERN-LHCC RD49 Project
  • Vanderbilt University Institute for Space and Defense Electronics
  • RE-Labs Inc. - Single Event Effects Testing Services, Canada
  • The Svedberg Laboratory - Radiation Testing Services (SEE), Sweden
  • Honeywell Aerospace - Microelectronics
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.