World Library  
Flag as Inappropriate
Email this Article

Rijndael S-box

Article Id: WHEBN0001903857
Reproduction Date:

Title: Rijndael S-box  
Author: World Heritage Encyclopedia
Language: English
Subject: Advanced Encryption Standard, Rijndael key schedule, ARIA (cipher), S-box, Finite fields
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Rijndael S-box

The Rijndael S-box is a matrix (square array of numbers) used in the Rijndael cipher, which the Advanced Encryption Standard (AES) cryptographic algorithm was based on.[1] The S-box (substitution box) serves as a lookup table.

Contents

  • Forward S-box 1
  • Inverse S-box 2
  • Design criteria 3
  • Alternate equation for the affine transformation 4
  • Implementations 5
  • References 6

Forward S-box

The S-box is generated by determining the multiplicative inverse for a given number in GF(28) = GF(2)[x]/(x8 + x4 + x3 + x + 1), Rijndael's finite field. Zero, which has no inverse, is mapped to zero. The multiplicative inverse is then transformed using the following affine transformation:

\begin{bmatrix} 1&0&0&0&1&1&1&1 \\ 1&1&0&0&0&1&1&1 \\ 1&1&1&0&0&0&1&1 \\ 1&1&1&1&0&0&0&1 \\ 1&1&1&1&1&0&0&0 \\ 0&1&1&1&1&1&0&0 \\ 0&0&1&1&1&1&1&0 \\ 0&0&0&1&1&1&1&1\end{bmatrix} \begin{bmatrix}x_0\\x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7\end{bmatrix} + \begin{bmatrix}1\\1\\0\\0\\0\\1\\1\\0\end{bmatrix}

where [x0, ..., x7] is the multiplicative inverse as a vector.

This affine transformation is the sum of multiple rotations of the byte as a vector, where addition is the XOR operation.

The matrix multiplication can be calculated by the following algorithm:

  1. Store the multiplicative inverse of the input number in two 8-bit unsigned temporary variables: s and x.
  2. Rotate the value s one bit to the left; if the value of s had a high bit (eighth bit from the right) of one, make the low bit of s one; otherwise the low bit of s is zero.
  3. XOR the value of x with the value of s, storing the value in x
  4. For three more iterations, repeat steps two and three; steps two and three are done a total of four times.
  5. The value of x will now have the result of the multiplication.

After the matrix multiplication is done, XOR the value by the decimal number 99 (the hexadecimal number 0x63, the binary number 1100011, and the bit string 11000110 representing the number in LSb first notation).

This will generate the following S-box, which is represented here with hexadecimal notation:

   | 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 
10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 
20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 
30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 
40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 
50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 
60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 
70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 
80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 
90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 
a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 
b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 
c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 
d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 
e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 
f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 

Here the column is determined by the least significant nibble, and the row is determined by the most significant nibble. For example, the value 0x9a is converted into 0xb8 by Rijndael's S-box. Note that the multiplicative inverse of 0x00 is defined as itself.

For C, C++ here is the initialization of the table:

 unsigned char s[256] = 
 {
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
 };

Inverse S-box

The inverse S-box is simply the S-box run in reverse. For example, the inverse S-box of 0xb8 is 0x9a. It is calculated by first calculating the inverse affine transformation of the input value, followed by the multiplicative inverse. The inverse affine transformation is as follows:

\begin{bmatrix} 0&0&1&0&0&1&0&1 \\ 1&0&0&1&0&0&1&0 \\ 0&1&0&0&1&0&0&1 \\ 1&0&1&0&0&1&0&0 \\ 0&1&0&1&0&0&1&0 \\ 0&0&1&0&1&0&0&1 \\ 1&0&0&1&0&1&0&0 \\ 0&1&0&0&1&0&1&0 \end{bmatrix} \begin{bmatrix}x_0\\x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7\end{bmatrix} + \begin{bmatrix}1\\0\\1\\0\\0\\0\\0\\0\end{bmatrix}

The following table represents Rijndael's inverse S-box:

   | 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
00 |52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb 
10 |7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb 
20 |54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e 
30 |08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25 
40 |72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92 
50 |6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84 
60 |90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06 
70 |d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b 
80 |3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73 
90 |96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e 
a0 |47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b 
b0 |fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4 
c0 |1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f 
d0 |60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef 
e0 |a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61 
f0 |17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d 

For C, C++ implementation, here is the initialization of the table:

 unsigned char inv_s[256] = 
 {
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
 };

Design criteria

The Rijndael S-Box was specifically designed to be resistant to linear and differential cryptanalysis. This was done by minimizing the correlation between linear transformations of input/output bits, and at the same time minimizing the difference propagation probability.

In addition, to strengthen the S-Box against algebraic attacks, the affine transformation was added. In the case of suspicion of a backdoor being built into the cipher, the current S-box might be replaced by another one. The authors claim that the Rijndael cipher structure should provide enough resistance against differential and linear cryptanalysis, even if an S-Box with "average" correlation / difference propagation properties is used.

Alternate equation for the affine transformation

An equivalent equation for the affine transformation is

b'_i = b_i \oplus b_{(i+4)\operatorname{mod}8} \oplus b_{(i+5)\operatorname{mod}8} \oplus b_{(i+6)\operatorname{mod}8} \oplus b_{(i+7)\operatorname{mod}8} \oplus c_i

where b' b and c are 8 bit arrays and c is 01100011.[2]

Another one is: b_{out} = (b_{in} \times 31_d) \operatorname{mod} 257_d \oplus 99d[3] [4]

Implementations

The following C code calculates the S-box:

#define ROTL8(x,shift) ((uint8_t) ((x) << (shift)) | ((x) >> (8 - (shift))))

void initialize_aes_sbox(uint8_t sbox[256]) {
        /* loop invariant: p * q == 1 in the Galois field */
        uint8_t p = 1, q = 1;
        do {
                /* multiply p by x+1 */
                p = p ^ (p << 1) ^ (p & 0x80 ? 0x1B : 0);
                /* divide q by x+1 */
                q ^= q << 1;
                q ^= q << 2;
                q ^= q << 4;
                q ^= q & 0x80 ? 0x09 : 0;
                /* compute the affine transformation */
                sbox[p] = 0x63 ^ q ^ ROTL8(q, 1) ^ ROTL8(q, 2) ^ ROTL8(q, 3) ^ ROTL8(q, 4);
        } while (p != 1);
        /* 0 is a special case since it has no inverse */
        sbox[0] = 0x63;
}

References

  1. ^ "The Rijndael Block Cipher" (PDF). Retrieved 2013-11-11. 
  2. ^ "FIPS PUB 197: the official AES standard" (PDF).  
  3. ^ Jörg J. Buchholz (2001-12-19). "Matlab implementation of the Advanced Encryption Standard" (PDF). 
  4. ^ Jie Cui, Liusheng Huang, Hong Zhong, Chinchen Chang, Wei Yang (May 2011). "AN IMPROVED AES S-BOX AND ITS PERFORMANCE ANALYSIS" (PDF). 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.