 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Scale height

Article Id: WHEBN0001994795
Reproduction Date:

 Title: Scale height Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Scale height

In various scientific contexts, a scale height is a distance over which a quantity decreases by a factor of e (approximately 2.71828, the base of natural logarithms). It is usually denoted by the capital letter H.

## Contents

• Scale height used in a simple atmospheric pressure model 1
• Planetary examples 2
• References 4

## Scale height used in a simple atmospheric pressure model

For planetary atmospheres, scale height is the increase in altitude for which the atmospheric pressure decreases by a factor of e. The scale height remains constant for a particular temperature. It can be calculated by

H = \frac{kT}{Mg}

or equivalently

H = \frac{RT}{g}

where:

The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards at an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.

Thus:

\frac{dP}{dz} = -g\rho

where g is the acceleration due to gravity. For small dz it is possible to assume g to be constant; the minus sign indicates that as the height increases the pressure decreases. Therefore, using the equation of state for an ideal gas of mean molecular mass M at temperature T, the density can be expressed as

\rho = \frac{MP}{kT}

Combining these equations gives

\frac{dP}{P} = \frac{-dz}{\frac{kT}{Mg}}

which can then be incorporated with the equation for H given above to give:

\frac{dP}{P} = - \frac{dz}{H}

which will not change unless the temperature does. Integrating the above and assuming where P0 is the pressure at height z = 0 (pressure at sea level) the pressure at height z can be written as:

P = P_0\exp\left(-\frac{z}{H}\right)

This translates as the pressure decreasing exponentially with height.

In the Earth's atmosphere, the pressure at sea level P0 averages about 1.01×105 Pa, the mean molecular mass of dry air is 28.964 u and hence 28.964 × 1.660×10−27 = 4.808×10−26 kg, and g = 9.81 m/s². As a function of temperature the scale height of the Earth's atmosphere is therefore 1.38/(4.808×9.81)×103 = 29.26 m/deg. This yields the following scale heights for representative air temperatures.

T = 290 K, H = 8500 m
T = 273 K, H = 8000 m
T = 260 K, H = 7610 m
T = 210 K, H = 6000 m

These figures should be compared with the temperature and density of the Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m3 at sea level to 0.53 = .125 g/m3 at 70 km, a factor of 9600, indicating an average scale height of 70/ln(9600) = 7.64 km, consistent with the indicated average air temperature over that range of close to 260 K.

Note:

• Density is related to pressure by the ideal gas laws. Therefore—with some departures caused by varying temperature—density will also decrease exponentially with height from a sea level value of ρ0 roughly equal to 1.2 kg m−3
• At heights over 100 km, molecular diffusion means that each molecular atomic species has its own scale height.

## Planetary examples

Approximate scale heights for selected Solar System bodies follow.