World Library  
Flag as Inappropriate
Email this Article

Sideroblastic anemia

Sideroblastic anemia
A Ring Sideroblast visualized by Prussian blue stain
Classification and external resources
ICD-10 D64.0-D64.3
ICD-9-CM 285.0
OMIM 301310 206000 300751
DiseasesDB 12110
MeSH D000756

Sideroblastic anemia or sideroachrestic anemia is a form of anemia in which the bone marrow produces ringed sideroblasts rather than healthy red blood cells (erythrocytes).[1] In sideroblastic anemia, the body has iron available but cannot incorporate it into hemoglobin, which red blood cells need to transport oxygen efficiently. The disorder may be caused either by a genetic disorder or indirectly as part of myelodysplastic syndrome,[2] which can evolve into hematological malignancies (especially acute myelogenous leukemia).

Sideroblasts (sidero- + -blast) are atypical, abnormal nucleated erythroblasts (precursors to mature red blood cells) with granules of iron accumulated in the mitochondria surrounding the nucleus.[3] Normally, Sideroblasts are present in the bone marrow, and enter the circulation after maturing into a normal erythrocyte.

Ring sideroblasts are so named so because iron-laden mitochondria form a ring around the nucleus. To count a cell as a ring sideroblast, the ring must encircle a third or more of the nucleus and contain five or more iron granules, according to the 2008 WHO classification of the tumors of the hematopoietic and lymphoid tissues.[4]

The WHO International Working Group on Morphology of MDS (IWGM-MDS) defined three types of sideroblasts:

  1. Type 1 sideroblasts: fewer than 5 siderotic granules in the cytoplasm
  2. Type 2 sideroblasts: 5 or more siderotic granules, but not in a perinuclear distribution
  3. Type 3 or ring sideroblasts: 5 or more granules in a perinuclear position, surrounding the nucleus or encompassing at least one third of the nuclear circumference.


  • Classification 1
  • Symptoms 2
  • Causes 3
  • Diagnosis 4
  • Laboratory findings 5
  • Treatment 6
  • Course and prognosis 7
  • See also 8
  • References 9
  • External links 10


Sideroblastic anemia is typically divided into subtypes based on its cause.

  • Hereditary or congenital sideroblastic anemia may be X-linked[5] or autosomal.
OMIM Name Gene
300751 X-linked sideroblastic anemia (XLSA) ALAS2
301310 sideroblastic anemia with spinocerebellar ataxia (ASAT) ABCB7
205950 pyridoxine-refractory autosomal recessive sideroblastic anemia SLC25A38
206000 pyridoxine-responsive sideroblastic anemia (vitamin B6 deficiency; pyridoxal phosphate required for heme synthesis)

GLRX5 has also been implicated.[6]

  • Acquired, or secondary, sideroblastic anemia develops after birth and is divided according to its cause.


Symptoms of sideroblastic anemia include skin paleness, fatigue, dizziness, and enlarged

  • GeneReviews/NCBI/NIH/UW entry on X-Linked Sideroblastic Anemia and Ataxia
  • Sideroblastic Anemias: Introduction - Information Center for Sickle Cell and Thalassemic Disorders
  • A concise description of this group of diseases from the Iron Disorders Institute
  • Anemia, Sideroblastic at NIH's Office of Rare Diseases
  • Sideroblastic Anemias Information Center
  • Rare Anemias Foundation

External links

  1. ^ Caudill JS, Imran H, Porcher JC, Steensma DP (October 2008). "Congenital sideroblastic anemia associated with germline polymorphisms reducing expression of FECH". Haematologica 93 (10): 1582–4.  
  2. ^ Sideroblastic Anemias: Anemias Caused by Deficient Erythropoiesis at Merck Manual of Diagnosis and Therapy Professional Edition
  3. ^ "Sideroblast" at Dorland's Medical Dictionary
  4. ^ Mufti, GJ; Bennett, JM; Goasguen, J; Bain, BJ; Baumann, I; Brunning, R; Cazzola, M; Fenaux, P; Germing, U; Hellström-Lindberg, E; Jinnai, I; Manabe, A; Matsuda, A; Niemeyer, CM; Sanz, G; Tomonaga, M; Vallespi, T; Yoshimi, A; International Working Group on Morphology of Myelodysplastic, Syndrome (Nov 2008). "Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts.". Haematologica 93 (11): 1712–7.  
  5. ^ X-linked sideroblastic anemia at NLM Genetics Home Reference
  6. ^ Camaschella C (September 2008). "Recent advances in the understanding of inherited sideroblastic anaemia". Br. J. Haematol. 143 (1): 27–38.  
  7. ^ Genetics Home Reference: Genetic Conditions > X-linked sideroblastic anemia Reviewed October 2006. Retrieved on 5 Mars, 2009
  8. ^ Aivado M, Gattermann N, Rong A, et al. (2006). "X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed X-chromosome inactivation patterns". Blood Cells Mol. Dis. 37 (1): 40–5.  
  9. ^ Saini, N; Jacobson, JO; Jha, S; Saini, V; Weinger, R (April 2012). "The perils of not digging deep enough--uncovering a rare cause of acquired anemia.". American journal of hematology 87 (4): 413–6.  
  10. ^ Papadakis, Maxine A.; Tierney, Lawrence M.; McPhee, Stephen J. (2005). "Sideroblastic Anemia". Current Medical Diagnosis & Treatment, 2006. McGraw-Hill Medical.  
  11. ^ Peto, T. E. A., Pippard, M. J., Weatherall, D. J. Iron overload in mild sideroblastic anaemias. Lancet 321: 375-378, 1983. Note: Originally Volume I.


See also

Severe refractory sideroblastic anemias requiring regular transfusions and/or that undergo leukemic transformation (5-10%) significantly reduce life expectancy.

3- Acquired reversible: 60% are responsive, but course depends on treatment of the underlying cause.

2- Acquired clonal: 40% are responsive, but the response may be minimal.

1- Congenital: 80% are responsive, though the anemia does not completely resolve.

Sideroblastic anemias are often described as responsive or non-responsive in terms of increased hemoglobin levels to pharmacological doses of vitamin B6.

Course and prognosis

Occasionally, the anemia is so severe that support with transfusion is required. These patients usually do not respond to erythropoietin therapy.[10] Some cases have been reported that the anemia is reversed or heme level is improved through use of moderate to high doses of pyrodoxine (Vitamin B6). In severe cases of SBA, bone marrow transplant is also an option with limited information about the success rate. Some cases are listed on MedLine and various other medical sites. In the case of isoniazid-induced sideroblastic anemia, the addition of B6 is sufficient to correct the anemia. Desferrioxamine, a chelating agent, is used to treat iron overload from transfusions. Therapeutic phlebotomy can be used to manage iron overload.[11] Bone marrow transplant (BMT) can be considered in severe cases.


Laboratory findings

In excess of 40% of the developing erythrocytes are ringed sideroblasts. Serum iron, percentage saturation and ferritin are increased. The total iron-binding capacity of the cells is normal to decreased. Stainable marrow hemosiderin is increased.

The anemia is moderate to severe and dimorphic. Microscopic viewing of the red blood cells will reveal marked unequal cell size and abnormal cell shape. Basophilic stippling is marked and target cells are common. Pappenheimer bodies are present in the red blood cells. The mean cell volume is commonly decreased (i.e., a microcytic anemia), but MCV may also be normal or even high. The RDW is increased with the red blood cell histogram shifted to the left. Leukocytes and platelets are normal. Bone marrow shows erythroid hyperplasia with a maturation arrest.

Ringed sideroblasts are seen in the bone marrow.

Bone marrow aspirate: ring sideroblasts


  • Congenital sideroblastic anemia
    • X-linked sideroblastic anemia: This is the most common congenital cause of sideroblastic anemia and involves a defect in ALAS2,[8] which is involved in the first step of heme synthesis. Although X-linked, approximately one third of patients are women due to skewed X-inactivation.
    • Autosomal recessive sideroblastic anemia involves mutations in the SLC25A38 gene. The function of this protein is not fully understood, but it is involved in mitochondrial transport of glycine. Glycine is a substrate for ALAS2 and necessary for heme synthesis. The autosomal recessive form is typically severe in presentation.
    • Genetic syndromes: Rarely, sideroblastic anemia may be part of a congenital syndrome and present with associated findings, such as ataxia, myopathy, and pancreatic insufficiency.
  • Acquired clonal sideroblastic anemia
    • Clonal sideroblastic anemias fall under the broader category of myelodysplastic syndromes (MDS). Three forms exist and include refractory anemia with ringed sideroblasts (RARS), refractory anemia with ringed sideroblasts and thrombocytosis (RARS-T), and refractory cytopenia with multilineage dysplasia and ringed sideroblasts (RCMD-RS). These anemias are associated with increased risk for leukemic evolution.
  • Acquired reversible sideroblastic anemia

Causes of sideroblastic anemia can be categorized into three groups: congenital sideroblastic anemia, acquired clonal sideroblastic anemia, and acquired reversible sideroblastic anemia. All cases involve dysfunctional heme synthesis or processing. This leads to granular deposition of iron in the mitochondria that form a ring around the nucleus of the developing red blood cell. Congenital forms often present with normocytic or microcytic anemia while acquired forms of sideroblastic anemia are often normocytic or macrocytic.



This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.