World Library  
Flag as Inappropriate
Email this Article

Snub dodecahedron

Article Id: WHEBN0000287137
Reproduction Date:

Title: Snub dodecahedron  
Author: World Heritage Encyclopedia
Language: English
Subject: Regular dodecahedron, Snub (geometry), Disdyakis triacontahedron, Catalan solid, Truncated dodecahedron
Publisher: World Heritage Encyclopedia

Snub dodecahedron

Snub dodecahedron

(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 92, E = 150, V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5}
Conway notation sD
Schläfli symbols sr{5,3} or s\begin{Bmatrix} 5 \\ 3 \end{Bmatrix}
Wythoff symbol | 2 3 5
Coxeter diagram
Symmetry group I, ½H3, [5,3]+, (532), order 60
Rotation group I, [5,3]+, (532), order 60
Dihedral Angle 3-3:164°10'31" (164.18°)
3-5:152°55'53" (152.93°)
References U29, C32, W18
Properties Semiregular convex chiral

Colored faces
(Vertex figure)

Pentagonal hexecontahedron
(dual polyhedron)


In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

The snub dodecahedron has 92 faces (the most of the 13 Archimedean solids): 12 are pentagons and the other 80 are equilateral triangles. It also has 150 edges, and 60 vertices.

It has two distinct forms, which are mirror images (or "enantiomorphs") of each other. The union of both forms is a compound of two snub dodecahedra, and the convex hull of both forms is a truncated icosidodecahedron.

Kepler first named it in Latin as dodecahedron simum in 1619 in his Harmonices Mundi. H. S. M. Coxeter, noting it could be derived equally from either the dodecahedron or the icosahedron, called it snub icosidodecahedron, with a vertical extended Schläfli symbol s\begin{Bmatrix} 5 \\ 3 \end{Bmatrix}.


  • Cartesian coordinates 1
  • Surface area and volume 2
  • Orthogonal projections 3
  • Geometric relations 4
  • Related polyhedra and tilings 5
  • Snub dodecahedral graph 6
  • See also 7
  • References 8
  • External links 9

Cartesian coordinates

Cartesian coordinates for the vertices of a snub dodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(α+β/ϕ+ϕ), ±(−αϕ+β+1/ϕ), ±(α/ϕ+βϕ−1)),
(±(−α/ϕ+βϕ+1), ±(−α+β/ϕ−ϕ), ±(αϕ+β−1/ϕ)),
(±(−α/ϕ+βϕ−1), ±(α−β/ϕ−ϕ), ±(αϕ+β+1/ϕ)) and
(±(α+β/ϕ−ϕ), ±(αϕ−β+1/ϕ), ±(α/ϕ+βϕ+1)),

with an even number of plus signs, where

α = ξ − 1 / ξ


β = ξϕ + ϕ2 + ϕ /ξ,

where ϕ = (1 + √5)/2 is the golden ratio and ξ is the real solution to ξ3 − 2ξ = ϕ, which is the number:

\xi = \sqrt[3]{\frac{\phi}{2} + \frac{1}{2}\sqrt{\phi - \frac{5}{27}}} + \sqrt[3]{\frac{\phi}{2} - \frac{1}{2}\sqrt{\phi - \frac{5}{27}}}

or approximately 1.7155615.

This snub dodecahedron has an edge length of approximately 6.0437380841.

Taking the odd permutations of the above coordinates with an even number of plus signs gives another form, the enantiomorph of the other one. Though it may not be immediately obvious, the figure obtained by taking the even permutations with an even number of plus signs is the same as that obtained by taking the odd permutations with an odd number of plus signs. Similarly, the mirror image has either an odd permutation with an even number of plus signs or an even permutation with an odd number of plus signs.

Surface area and volume

Transformation from rhombicosidodecahedron to snub dodecahedron

For a snub dodecahedron whose edge length is 1, the surface area is

A = 20\sqrt{3} + 3\sqrt{25+10\sqrt{5}} \approx 55.28674495844515

and the volume is

V= \frac{12\xi^2(3\phi+1)-\xi(36\phi+7)-(53\phi+6)}{6\sqrt{3-\xi^2}^3} \approx 37.61664996273336

where ϕ is the golden ratio.

The snub dodecahedron has the highest sphericity of all Archimedean solids.

Orthogonal projections

The snub dodecahedron has two special orthogonal projections, centered, on two types of faces: triangles, and pentagons, correspond to the A2 and H2 Coxeter planes.

Orthogonal projections
Centered by Face
[3] [5]+ [2]

Geometric relations

The snub dodecahedron can be generated by taking the twelve pentagonal faces of the dodecahedron and pulling them outward so they no longer touch. At a proper distance this can create the rhombicosidodecahedron by filling in square faces between the divided edges and triangle faces between the divided vertices. But for the snub form, only add the triangle faces and leave the square gaps empty. Then apply an equal rotation to the centers of the pentagons and triangles, continuing the rotation until the gaps can be filled by two equilateral triangles.


(Expanded dodecahedron)

Snub dodecahedron

The snub dodecahedron can also be derived from the truncated icosidodecahedron by the process of alternation. Sixty of the vertices of the truncated icosidodecahedron form a polyhedron topologically equivalent to one snub dodecahedron; the remaining sixty form its mirror-image. The resulting polyhedron is vertex-transitive but not uniform, because its edges are of unequal lengths; some deformation is required to transform it into a uniform polyhedron.

Related polyhedra and tilings

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3. V3.4.5.4 V4.6.10 V3.

This semiregular polyhedron is a member of a sequence of snubbed polyhedra and tilings with vertex figure ( and Coxeter–Dynkin diagram . These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.

n32 symmetry mutations of snub tilings:
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 ∞32
Config. V3. V3. V3. V3. V3. V3. V3. V3.3.3.3.∞

Snub dodecahedral graph

Snub dodecahedral graph
5-fold symmetry Schlegel diagram
Vertices 60
Edges 150
Automorphisms 60
Properties Hamiltonian, regular

In the mathematical field of graph theory, a snub dodecahedral graph is the graph of vertices and edges of the snub dodecahedron, one of the Archimedean solids. It has 60 vertices and 150 edges, and is an Archimedean graph.[1]

Orthogonal projections

See also

  • Planar polygon to polyhedron transformation animation
  • ccw and cw spinning snub dodecahedron


  1. ^ Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269 
  • Jayatilake, Udaya (March 2005). "Calculations on face and vertex regular polyhedra". Mathematical Gazette 89 (514): 76–81. 
  • (Section 3-9)  
  • Cromwell, P. (1997). Polyhedra. United Kingdom: Cambridge. pp. 79–86 Archimedean solids.  

External links

  • Eric W. Weisstein, Snub dodecahedron (Archimedean solid) at MathWorld
  • Richard Klitzing, 3D convex uniform polyhedra, s3s5s - snid
  • Editable printable net of a Snub Dodecahedron with interactive 3D view
  • The Uniform Polyhedra
  • Virtual Reality Polyhedra The Encyclopedia of Polyhedra
  • The Snub Dodecahedron made with LEGO by Antonio Nicassio (ITALY)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.