World Library  
Flag as Inappropriate
Email this Article

Sodium triphosphate

Article Id: WHEBN0000901091
Reproduction Date:

Title: Sodium triphosphate  
Author: World Heritage Encyclopedia
Language: English
Subject: Phosphoric acid, Laundry detergent, TPP, Eutrophication, Polygon (disambiguation)
Collection: Food Additives, Phosphates, Sodium Compounds
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Sodium triphosphate

Sodium triphosphate
Names
IUPAC name
Pentasodium triphosphate
Other names
sodium tripolyphosphate, polygon, STPP
Identifiers
 Y
PubChem
RTECS number YK4570000
UNII  N
Properties
Na5P3O10
Molar mass 367.864 g/mol
Appearance white powder
Density 2.52 g/cm3
Melting point 622 °C (1,152 °F; 895 K)
14.5 g/100 mL (25 °C)
Hazards
Safety data sheet ICSC 1469
NFPA 704
0
2
0
Flash point Non-flammable
Related compounds
Other anions
Trisodium phosphate
Tetrasodium pyrophosphate
Sodium hexametaphosphate
Other cations
Pentapotassium triphosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Sodium triphosphate (STP), also sodium tripolyphosphate (STPP), or tripolyphosphate (TPP),[1]) is an sodium salt of the polyphosphate penta-anion, which is the conjugate base of triphosphoric acid. It is produced on a large scale as a component of many domestic and industrial products, especially detergents. Environmental problems associated with eutrophication are attributed to its widespread use.

Contents

  • Preparation and properties 1
  • Uses 2
    • In detergents 2.1
    • Food applications 2.2
    • Other uses 2.3
  • Health effects 3
  • Environmental effects 4
    • Effects of wastewater containing phosphorus 4.1
  • See also 5
  • References 6

Preparation and properties

Sodium tripolyphosphate is produced by heating a stoichiometric mixture of disodium phosphate, Na2HPO4, and monosodium phosphate, NaH2PO4, under carefully controlled conditions.[2]

2 Na2HPO4 + NaH2PO4 → Na5P3O10 + 2 H2O

In this way, approximately 2 million tons are produced annually.

STPP is a colourless salt, which exists both in anhydrous form and as the hexahydrate. The anion can be described as the pentanionic chain [O3POP(O)2OPO3]5−.[3][4] Many related di-, tri-, and polyphosphates are known including the cyclic triphosphate P3O93−. It binds strongly to metal cations as both a bidentate and tridentate chelating agent.

Chelation of a metal cation by triphosphate.

Uses

In detergents

The majority of STPP is consumed as a component of commercial detergents. It serves as a "builder," industrial jargon for a water softener. In hard water (water that contains high concentrations of Mg2+ and Ca2+), detergents are deactivated. Being a highly charged chelating agent, TPP5− binds to dications tightly and prevents them from interfering with the sulfonate detergent.[5]

Food applications

STPP is a preservative for seafood, meats, poultry, and animal feeds.[5] It is common in food production as E number E451. In foods, STPP is used as an emulsifier and to retain moisture. Many governments regulate the quantities allowed in foods, as it can substantially increase the sale weight of seafood in particular. The United States Food and Drug Administration lists STPP as "generally recognized as safe.".

Other uses

Other uses (hundreds of thousands of tons/year) include ceramics (decrease the viscosity of glazes up to a certain limit), leather tanning (as masking agent and synthetic tanning agent - SYNTAN), anticaking, setting retarders, flame retardants, paper, anticorrosion pigments, textiles, rubber manufacture, fermentation, antifreeze."[5] TPP is used as a polyanion crosslinker in polysaccharide based drug delivery.[6]

Health effects

Polyphosphates are hydrolyzed into simpler phosphates, which in moderate amounts are nutritious. For example, ATP, a related derivative of triphosphate, is essential for life. Thus, the toxicity of polyphosphates is low, as the lowest LD50 after oral administration is >1,000 mg/kg body weight.[1] Similarly, no mutagenic, carcinogenic, or reproductive effects have been noted.[1] Salts of polyphosphate anions are moderately irritating to skin and mucous membranes because they are mildly alkaline.[1]

Environmental effects

In 2000, the worldwide consumption of STPP was estimated to be approximately 2,000,000 tonnes.[5] Because it is very water-soluble, it is not significantly transferred to sewage sludge, and therefore to soil by sludge spreading. No environmental risk related to STPP use in detergents is indicated in soil or air. As an ingredient of household cleaning products, STPP present in domestic waste waters is mainly discharged to the aquatic compartment, directly, via waste water treatment plants, via septic tanks, infiltration or other autonomous waste water systems.

As STPP is an inorganic substance, Daphnia, fish, algae). Because of this, and because of the only temporary presence of STPP in the aquatic environment (due to hydrolysis), no studies have been carried out to date concerning the chronic effects of STPP on these aquatic organisms. Predicted no-effect concentrations were therefore calculated for the aquatic environment and sediments on the basis of the acute aquatic ecotoxicity results.

Effects of wastewater containing phosphorus

Detergents containing phosphorus contribute, together with other sources of phosphorus, to the eutrophication of many fresh waters.[1] Eutrophication is an increase in chemical nutrients—typically compounds containing nitrogen or phosphorus—in an ecosystem. It may occur on land or in water. The term is, however, often used to mean the resultant increase in the ecosystem's primary productivity (excessive plant growth and decay), and further effects including lack of oxygen and severe reductions in water quality and fish and other animal populations.

Phosphorus can theoretically generate its weight 500 times in algae. [7] Whereas the primary production in marine waters is mainly nitrogen-limited, fresh waters are considered to be phosphorus-limited. A large part of the sewage effluents in many countries is released untreated into freshwater recipients, and here the use of phosphorus as complexing agents is still an environmental concern.[1]

The eutrophication of the Potomac River, caused from phosphate run-off, is evident from the bright green bloom of algae.

See also

References

  1. ^ a b c d e f Complexing agents, Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Danish Environmental Protection Agency, Accessed 2008-07-15
  2. ^  
  3. ^ Corbridge, D. E. C. (1960). "The crystal structure of sodium triphosphate, Na5P3O10, phase I". Acta Crystallographica 13: 263.  
  4. ^ Davies, D. R.; Corbridge, D. E. C. (1958). "The crystal structure of sodium triphosphate, Na5P3O10, phase II". Acta Crystallographica 11: 315.  
  5. ^ a b c d Klaus Schrödter, Gerhard Bettermann, Thomas Staffel, Friedrich Wahl, Thomas Klein, Thomas Hofmann "Phosphoric Acid and Phosphates" in Ullmann’s Encyclopedia of Industrial Chemistry 2008, Wiley-VCH, Weinheim. doi:10.1002/14356007.a19_465.pub3
  6. ^ P. Calvo, C. RemunanLopez, J.L. VilaJato, M.J. Alonso, Novel hydrophilic chitosanpolyethylene oxide nanoparticles as protein carriers, J. Appl. Polym. Sci. 63 (1997) 125–132
  7. ^ (Wetzel 1983).


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.