World Library  
Flag as Inappropriate
Email this Article

Sofar bomb

Article Id: WHEBN0008658158
Reproduction Date:

Title: Sofar bomb  
Author: World Heritage Encyclopedia
Language: English
Subject: Hydroacoustics, Acoustical oceanography, Physical oceanography, Oceanography, Anti-submarine warfare
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Sofar bomb

In oceanography, a sofar bomb (SOund Fixing And Ranging bomb), occasionally referred to as a sofar disc,[1] is a long-range position-fixing system that uses explosive sounds in the deep sound channel of the ocean to enable pinpointing of the location of ships or crashed planes. The deep sound channel is ideal for the device, as the minimum speed of sound at that depth improves the signal's traveling ability. A position is determined from the differences in arrival times at receiving stations of known geographic locations. The useful range from the signal sources to the receiver can exceed 3,000 miles (4,800 km).

Design

For this device to work as intended, it must have several qualities. Firstly, the bomb needs to detonate at the correct depth, so that it can take full advantage of the deep sound channel. The sofar bomb has to sink fast enough so that it reaches the required depth within a reasonable amount of time (usually about 5 minutes).[2]

To determine the position of a sofar bomb that has been detonated, three or more naval stations combine their reports of when they received the signal.

Benefits of the deep sound channel

Detonating the sofar bomb in the deep sound channel gives it huge benefits. The channel itself helps keep the sound waves contained within the same depth, as the rays of sound that have an upward or downward velocity are pushed back towards the deep sound channel because of refraction. Because the sound waves do not spread out vertically, the horizontal sound rays maintain far more strength than they would otherwise. This makes it far easier for the stations on shore to pick up and analyze the signal. Usually, the blasts use frequencies between 30 and 150 Hz, which also helps stop the signal from weakening too much. A side effect of this is that the slightly higher frequencies of sound waves emitted move a bit faster than the lower frequencies, making the signal that the naval stations hear have a longer duration.

History

Dr. Maurice Ewing, a pioneer of oceanography and geophysics, first suggested putting small hollow metal spheres in pilots' emergency kits during World War II. The spheres would implode when they sank to the sofar channel, acting as a secret homing beacon to be received by microphones on coastlines that could pinpoint downed pilots’ positions.[3] This technology turned out to be extremely useful for the naval conflicts during WWII by providing a way for ships to accurately report their position without use of radio, or to find crashed planes and ships. During the war, the primary model of sofar bomb used by the United States was the Mk-22.[4] It worked exceptionally well, and had an adjustable fuse length for different depth detonations. The bomb was used with a chart that detailed the depth of the deep sound channel, so that the 4 pounds (1.8 kg) of TNT would explode at the correct time for its location (as the deep sound channel's actual depth varies with areas of the ocean). Its main safety mechanism was the fact that the detonator could not begin to go off without a water pressure that corresponded to at least 750 feet (230 m).[5]

References

  1. ^ http://www.youtube.com/watch?v=EuhccACOd1U&feature=channel
  2. ^  
  3. ^ "Sound Channel, SOFAR, and SOSUS". Robert A. Muller. Retrieved 2007-04-14. 
  4. ^  
  5. ^  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.