World Library  
Flag as Inappropriate
Email this Article

Spectrum

Article Id: WHEBN0000029329
Reproduction Date:

Title: Spectrum  
Author: World Heritage Encyclopedia
Language: English
Subject: Motown Chartbusters, Chromosphere, List of astronomy acronyms, Timbre, Psychedelia
Collection: Broad-Concept Articles, Concepts in Physics, Optics, Scientific Terminology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Spectrum

The spectrum in a rainbow

A spectrum (plural spectra or spectrums[1]) is a condition that is not limited to a specific set of values but can vary infinitely within a continuum. The word was first used scientifically within the field of optics to describe the rainbow of colors in visible light when separated using a prism. As scientific understanding of light advanced, it came to apply to the entire electromagnetic spectrum.

Spectrum has since been applied by analogy to topics outside of optics. Thus, one might talk about the spectrum of political opinion, or the spectrum of activity of a drug, or the autism spectrum. In these uses, values within a spectrum may not be associated with precisely quantifiable numbers or definitions. Such uses imply a broad range of conditions or behaviors grouped together and studied under a single title for ease of discussion.

In most modern usages of spectrum there is a unifying theme between extremes at either end. Some older usages of the word did not have a unifying theme, but they led to modern ones through a sequence of events set out below. Modern usages in mathematics did evolve from a unifying theme, but this may be difficult to recognize.

Contents

  • Etymology 1
  • Physical science 2
    • Electromagnetic spectrum 2.1
    • Mass spectrum 2.2
    • Energy spectrum 2.3
    • Spectrogram 2.4
  • Biological science 3
  • Mathematics 4
  • Social science 5
  • References 6

Etymology

In Latin spectrum means "image" or "apparition", including the meaning "spectre". Spectral evidence is testimony about what was done by spectres of persons not present physically, or hearsay evidence about what ghosts or apparitions of Satan said. It was used to convict a number of persons of witchcraft at Salem, Massachusetts in the late 17th century. The word "spectrum" [Spektrum] was strictly used to designate a ghostly optical afterimage by Goethe in his Theory of Colors and Schopenhauer in On Vision and Colors.

The prefix "spectro-" is used to form words relating to spectra. For example, a spectrometer is a device used to record spectra and spectroscopy is the use of a spectrometer for chemical analysis.

Physical science

Diagram illustrating the electromagnetic spectrum

In the 17th century the word spectrum was introduced into optics by Isaac Newton, referring to the range of colors observed when white light was dispersed through a prism. Soon the term referred to a plot of light intensity or power as a function of frequency or wavelength, also known as a spectral density.

The term spectrum was expanded to apply to other waves, such as sound waves that could also be measured as a function of frequency, frequency spectrum and power spectrum of a signal. The term now applies to any signal that can be measured or decomposed along a continuous variable such as energy in electron spectroscopy or mass to charge ratio in mass spectrometry. Spectrum is also used to refer to a graphical representation of the signal as a function of the dependent variable.

Electromagnetic spectrum

Electromagnetic spectrum of a quasar.

Electromagnetic spectrum refers to the full range of all frequencies of electromagnetic radiation[2] and also to the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object. Devices used to measure an electromagnetic spectrum are called spectrograph or spectrometer. The visible spectrum is the part of the electromagnetic spectrum that can be seen by the human eye. The wavelength of visible light ranges from 390 to 700 nm.[3] The absorption spectrum of a chemical element or chemical compound is the spectrum of frequencies or wavelengths of incident radiation. The emission spectrum refers to the spectrum of radiation emitted due to an atom or molecule making a transition from a higher to a lower energy state.

The radio spectrum is the part of the electromagnetic spectrum corresponding to frequencies lower below 300 GHz, which corresponds to wavelengths longer than about 1 mm. The microwave spectrum corresponds to frequencies between 300 MHz (0.3 GHz) and 300 GHz and wavelengths between one meter and one millimeter.[4][5]

In astronomy, stellar classification is the classification of stars based on their characteristic electromagnetic spectra.

Mass spectrum

Mass spectrum of Titan's ionosphere

A mass spectrum is a plot of ion abundance as a function of mass-to-charge ratio that is obtained by a mass spectrometer instrument.[6] The mass spectrum can be used to determine the quantity and mass mass of atoms and molecules. Tandem mass spectrometry specra are used to determile molecular structure.

Energy spectrum

In physics, the energy spectrum of a particle is the number of particles or intensity of a particle beam as a function of particle energy. Examples of techniques that produce an energy spectrum are alpha-particle spectroscopy, electron energy loss spectroscopy, and mass-analyzed ion-kinetic-energy spectrometry.

Spectrogram

Spectrogram of dolphin vocalizations.

In acoustics, a spectrogram is a visual representation of the frequency spectrum of sound as a function of time or another variable.

Biological science

Antibiotic spectrum of activity is a component of antibiotic classification. A broad-spectrum antibiotic is active against a wide range of bacteria,[7] whereas a narrow-spectrum antibiotic is effective against specific families of bacteria.[8] An example of a commonly used broad-spectrum antibiotic is ampicillin.[8] An example of a narrow spectrum antibiotic is Dicloxacillin, which acts on beta-lactamase-producing Gram-positive bacteria such as Staphylococcus aureus.[9]

In psychiatry, the spectrum approach uses the term spectrum to describe a range of linked conditions, sometimes also extending to include singular symptoms and traits. For example, the autism spectrum describes a range of conditions classified as neurodevelopmental disorders.

Mathematics

In mathematics, the spectrum of a matrix is the multiset of the eigenvalue of the matrix.

In functional analysis, the concept of the spectrum of a bounded operator is a generalization of the eigenvalue concept for matrices.

In algebraic topology, a spectrum is an object representing a generalized cohomology theory.

Social science

A Nolan chart of the political spectrum using (red leftism and blue rightism) coding.

In social science, economic spectrum is used to indicate the range of social class. In political science, the term political spectrum refers to a system of classifying political positions in one or more dimensions, for example in a range including right wing and left wing.

References

  1. ^ Dictionary.com. The American Heritage Dictionary of the English Language, Fourth Edition. Houghton Mifflin Company, 2004. (accessed: January 25, 2008).
  2. ^ "Imagine the Universe! Dictionary". NASA. 
  3. ^ Cecie Starr (2005). Biology: Concepts and Applications. Thomson Brooks/Cole.  
  4. ^ Pozar, David M. (1993). Microwave Engineering Addison–Wesley Publishing Company. ISBN 0-201-50418-9.
  5. ^ Sorrentino, R. and Bianchi, Giovanni (2010) Microwave and RF Engineering, John Wiley & Sons, p. 4, ISBN 047066021X.
  6. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "mass spectrum".
  7. ^ Clayton L. Thomas Editor, Taber's Cyclopedic Medical Dictionary 17th ed., 1993 (ISBN 0-8036-8313-8)
  8. ^ a b S.J. Hopkins, Drugs and Pharmacology for Nurses 12th ed., 1997 (ISBN 0-443-05249 2)
  9. ^ Miranda-Novales G, Leaños-Miranda BE, Vilchis-Pérez M, Solórzano-Santos F (2006). spp. strains"Staphylococcus activity effects of combinations of cephalothin, dicloxacillin, imipenem, vancomycin and amikacin against methicillin-resistant In vitro". Ann. Clin. Microbiol. Antimicrob. 5: 25.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.