World Library  
Flag as Inappropriate
Email this Article

Star polyhedron

Article Id: WHEBN0007087334
Reproduction Date:

Title: Star polyhedron  
Author: World Heritage Encyclopedia
Language: English
Subject: Icositruncated dodecadodecahedron, Kepler–Poinsot polyhedron, Great truncated icosidodecahedron, Snub icosidodecadodecahedron, Regular polyhedron
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Star polyhedron

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

There are two general kinds of star polyhedron:

  • Polyhedra which self-intersect in a repetitive way.
  • Concave polyhedra of a particular kind which alternate convex and concave or saddle vertices in a repetitive way. Mathematically these figures are examples of star domains.

Mathematical studies of star polyhedra are usually concerned with regular, uniform polyhedra, or the duals of the uniform polyhedra. All these stars are of the self-intersecting kind.

Contents

  • Self-intersecting star polyhedra 1
    • Regular star polyhedra 1.1
    • Uniform and uniform dual star polyhedra 1.2
    • Stellations and facettings 1.3

Self-intersecting star polyhedra

Regular star polyhedra

The regular star polyhedra, are self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures.

There are four regular star polyhedra, known as the Kepler-Poinsot polyhedra. The Schläfli symbol {p,q} implies faces with p sides, and vertex figures with q sides. Two of them have pentagrammic {5/2} faces and two have pentagrammic vertex figures.


These images show each form with a single face colored yellow to show the visible portion of that face.

Uniform and uniform dual star polyhedra

There are many uniform star polyhedra including two infinite series, of prisms and of antiprisms, and their duals.

The uniform and dual uniform star polyhedra are also self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures or both.

The uniform star polyhedra have regular faces or regular star polygon faces. The dual uniform star polyhedra have regular faces or regular star polygon vertex figures.

Example uniform polyhedra and their duals
Uniform polyhedron Dual polyhedron

The pentagrammic prism is a prismatic star polyhedron. It is composed of two pentagram faces connected by five intersecting square faces.

The pentagrammic dipyramid is also a star polyhedron, representing the dual to the pentagrammic prism. It is face-transitive, composed of ten intersecting isosceles triangles.

The great dodecicosahedron is a star polyhedron, constructed from a single vertex figure of intersecting hexagonal and decagrammic, {10/3}, faces.

The great dodecicosacron is the dual to the great dodecicosahedron. It is face-transitive, composed of 60 intersecting bow-tie-shaped quadrilateral faces.

Stellations and facettings

Beyond the forms above, there are unlimited classes of self-intersecting (star) polyhedra.

Two important classes are the stellations of convex polyhedra and their duals, the facettings of the dual polyhedra.

For example, the complete stellation of the icosahedron (illustrated) can be interpreted as a self-intersecting polyhedron composed of 12 identical faces, each a

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.