World Library  
Flag as Inappropriate
Email this Article

Steam locomotive exhaust system

Article Id: WHEBN0028536923
Reproduction Date:

Title: Steam locomotive exhaust system  
Author: World Heritage Encyclopedia
Language: English
Subject: Chimney (locomotive), Steam locomotive exhaust systems, Lemaître exhaust
Publisher: World Heritage Encyclopedia

Steam locomotive exhaust system

Simple blastpipe arrangement
Later double chimney, with Kylchap blastpipes

The Steam locomotive exhaust system consists of those parts of a steam locomotive which together discharge exhaust steam from the cylinders in order to increase the draught through the fire. It usually consists of the blastpipe (or first stage nozzle), smokebox, and chimney, although later designs also include second and third stage nozzles.


The primacy of discovery of the effect of directing the exhaust steam up the chimney as a means of providing draft through the fire is the matter of some controversy, Ahrons (1927) devoting significant attention to this matter. The exhaust from the cylinders on the first steam locomotive – built by George Stephenson also employed the same method, and again it is not clear whether that was an independent discovery or a copy of one of the other engineers.

The locomotives at the time employed either a single flue boiler or a single return flue, with the fire grate at one end of the flue. For boilers of this design the blast of a contracted orifice blastpipe was too strong, and would lift the fire. It was not until the development of the multitubular boiler that the centrally positioned, contracted orifice blastpipe became standard. The combination of multi-tube boiler and steam blast are often cited as the principal reasons for the high performance of Rocket of 1829 at the Rainhill Trials.


Soon after the power of the steam blast was discovered it became apparent that a smokebox was needed beneath the chimney, to provide a space in which the exhaust gases emerging from the boiler tubes can mix with the steam. This had the added advantage of allowing access to collect the ash drawn through the fire tubes by the draught. The blastpipe, from which steam is emitted, was mounted directly beneath the chimney at the bottom of the smokebox.

The steam blast is largely self-regulating: an increase in the rate of steam consumption by the cylinders increases the blast, which increases the draught and hence the temperature of the fire.

Modern locomotives are also fitted with a blower, which is a device that releases steam directly into the smokebox for use when a greater draught is needed without a greater volume of steam passing through the cylinders. An example of such situation is when the regulator is closed suddenly, or the train passes through a tunnel. If a single line tunnel is poorly ventilated, a locomotive entering at high speed can cause a rapid compression of the air within the tunnel. This compressed air may enter the chimney with substantial force. This can be extremely dangerous if the firebox door is open at the time. For this reason the blower is often turned on in these situations, to counteract the compression effect.

Later development

The aim of exhaust system development is to obtain maximum smokebox vacuum with minimum back pressure on the pistons.

Little development of the basic principles of smokebox design took place until 1908, when the first comprehensive examination of steam-raising performance was carried out by Churchward.

Andre Chapelon made a significant improvement with his Kylchap exhaust which incorporated a Kyala spreader (second stage nozzle) and third stage cowl between the blastpipe (first stage nozzle) and chimney. This became popular at the end of the steam era (early-mid 20th century) and was used on the Nigel Gresley's Mallard which holds the official world speed record for steam locomotives. Other contemporary designs include the Giesl, and Lemaître exhausts which achieve the same aim by different means.

Further development was carried on by Chapelon's friend Livio Dante Porta, who developed the Kylpor, Lempor and Lemprex exhausts systems, and also developed sophisticated mathematical models to optimise their use for specific locomotives.

With the demise of commercial steam operations on mainline railways worldwide, there has been little funding for further development of steam locomotive technology, despite advances in materials technology and computer modelling techniques which might have enabled further improvements to efficiency.


  • P.W.B. Semmens and A.J. Goldfinch (2003). How Steam Locomotives Really Work. OUP.  

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.