 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Surface wave magnitude

Article Id: WHEBN0017405575
Reproduction Date:

 Title: Surface wave magnitude Author: World Heritage Encyclopedia Language: English Subject: Collection: Seismic Scales Publisher: World Heritage Encyclopedia Publication Date:

### Surface wave magnitude

The surface wave magnitude (M_s) scale is one of the magnitude scales used in seismology to describe the size of an earthquake. It is based on measurements in Rayleigh surface waves that travel primarily along the uppermost layers of the earth. It is currently used in People's Republic of China as a national standard (GB 17740-1999) for categorising earthquakes.

Surface wave magnitude was initially developed in 1950s by the same researchers who developed the local magnitude scale ML in order to improve resolution on larger earthquakes:

Recorded magnitudes of earthquakes during that time, commonly attributed to Richter, could be either M_s or M_L.

## Contents

• Definition 1
• Other studies 2
• Notes and references 4

## Definition

The formula to calculate surface wave magnitude is:

M = \log_{10}\left(\frac{A}{T}\right)_{\text{max}} + \sigma(\Delta)

where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s, Δ is the epicentral distance in °, and

\sigma(\Delta) = 1.66\cdot\log_{10}(\Delta) + 3.5

According to GB 17740-1999, the two horizontal displacements must be measured at the same time or within 1/8 of a period; if the two displacements have different periods, weighed sum must be used:

T = \frac{T_{N}A_{N} + T_{E}A_{E}}{A_{N} + A_{E}}

where AN is the north-south displacement in μm,　AE is the east-west displacement in μm,　TN is the period corresponding to AN in s, and TE is the period corresponding to AE in s.

## Other studies

Vladimír Tobyáš and Reinhard Mittag proposed to relate surface wave magnitude to local magnitude scale ML, using

M_s = -3.2 + 1.45 M_{L}

Other formulas include three revised formulae proposed by CHEN Junjie et al.:

M_s = \log_{10}\left(\frac{A_{max}}{T}\right) + 1.54\cdot \log_{10}(\Delta) + 3.53
M_s = \log_{10}\left(\frac{A_{max}}{T}\right) + 1.73\cdot \log_{10}(\Delta) + 3.27

and

M_s = \log_{10}\left(\frac{A_{max}}{T}\right) - 6.2\cdot \log_{10}(\Delta) + 20.6