World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000900080
Reproduction Date:

Title: Tl1  
Author: World Heritage Encyclopedia
Language: English
Subject: Synchronous optical networking, Northbound interface, Oscilloquartz, Terminal Identifier – Address Resolution Protocol
Publisher: World Heritage Encyclopedia


Transaction Language 1 (TL1) is a widely used management protocol in telecommunications. It is a cross-vendor, cross-technology GR-831-CORE.


TL1 was developed by Bellcore in 1984 as a standard man-machine language to manage network elements for the Regional Bell Operating Companies (RBOCs). It is based on Z.300 series man machine language standards. TL1 was designed as a standard protocol readable by machines as well as humans to replace the diverse ASCII based protocols used by different Network Element (NE) vendors. It is extensible to incorporate vendor specific commands.

Telcordia OSSs such as NMA (Network Monitoring and Analysis) used TL1 as the element management (EMS) protocol. This drove network element vendors to implement TL1 in their devices.

Language overview

TL1 Messages

The TL1 language consists of a set of messages. There are 4 kinds of messages:

  1. Input message - This is the command sent by the user or the OSS.
  2. Output/Response message - This is reply sent by the NE(Network Element) in response to an input message.
  3. Acknowledgment message - This is an acknowledgment of the receipt of a TL1 input message and is sent if the response message will be delayed by more than 2 seconds.
  4. Autonomous message - These are asynchronous messages (usually events or alarms) sent by the NE.

TL1 message structure

TL1 messages follow a fixed structure, and all commands must conform to it. However, the commands themselves are extensible and new commands can be added by NE vendors.

These are some of the message components:

  • Target identifier (TID) & Source identifier (SID) - TID/SID is a unique name assigned to each NE. TID is used to route the message to an NE, SID is used to identify the source of an autonomous message.
  • Access identifier (AID) - AID identifies an entity within an NE.
  • Correlation tag (CTAG) & Autonomous correlation tag (ATAG) - CTAG/ATAG are numbers used to correlate messages.

TL1 input message




TL1 input message
Command code Staging block Payload block
Verb modifier1 modifier2 TID AID CTAG General block Data block
ENT USER SECU MyNE sridev 101 password

TL1 output message


MyNE 04-08-14 09:12:04


TL1 output message
Response Header Response Id Response block Terminators
SID Date Time M CTAG Completion code
MyNE 04-08-14 09:12:04 M 101 COMPLD "UID=sridev:CID=CRAFT,UAP=1:" ;

TL1 acknowledgment message


OK 100


TL1 acknowledgment message
Acknowledgment code CTAG Terminator
OK 101 >

TL1 autonomous message


MyNE 04-08-14 09:12:04


TL1 autonomous message
Auto Header Auto Id Auto block Terminators
SID Date Time Alarm code ATAG Verb
MyNE 04-08-14 09:12:04 A 101 REPT EVT SESSION

TL1 Surveillance and Maintenance Messages

TL1 also has application messages for NE and transport surveillance functions. The messages and functions cover a wide variety of NE types, user needs, and supplier innovations.

Telcordia GR-833, TL1 Surveillance and Maintenance Messages contains the generic functions and messages that pertain to the following generic types of NEs:

  • Digital Loop Carrier (DLC)
    • Central Office Terminal (COT)
    • Integrated Digital Loop Carrier (IDLC)
    • Remote Digital Terminal (RDT).
  • Digital Terminal and Cross-Connect Equipment
    • Automated Digital Terminal System (ADTS)
    • Digital Cross-Connect System (DCS)
    • Hybrid Add/Drop Multiplexer/Digital Cross-Connect System (ADM/DCS)
    • Optical Add/Drop Multiplexer (OADM)
    • Reconfigurable Optical Add/Drop Multiplexer (ROADM)
    • Low Bit-Rate Voice (LBRV) Terminal.
  • Digital Multiplexing and Line Terminating Equipment
    • Multiplexer (MUX)
    • Add/Drop Multiplexer (ADM)
    • Line Terminating Equipment (LTE)
    • Repeater (REP)
    • Automatic Protection Switching (APS) Equipment.
  • Digital Switching Systems
    • Circuit Switching (CS) System
    • Packet Switching (PS) System (including Access Concentrators).
  • ISDN Switching Systems
  • SONET Transport Systems
  • FITL Transport Systems
    • Passive Optical Network (PON).
  • Metro Ethernet Systems
  • Common Channel Signaling (CCS) Systems
    • Signal Transfer Point (STP)
    • Service Control Point (SCP)
    • Service Switching Point (SSP).
  • Supervisory Systems (SSs)
  • Environment Monitors (EMs)
  • Timing Signal Generator (TSG)

An NE address consists of two types of parameters, routing and access. The maintenance functions can be grouped into the following six categories:

  • Alarm Surveillance (AS) − Messages of events or conditions (e.g., carrier group alarms, threshold violations).
  • Performance Monitoring (PM) − Generated performance data (e.g., number of errored seconds, number of slips).
  • Failure Identification (FI) − Mechanisms within the NE to detect and isolate equipment and facility troubles.
  • Recovery and Control (RC) − Maintenance purposes. This includes Maintenance State Control, Loopbacks, External Device Control, Initialization, Emergency Reconfiguration, and Process Inhibit and Termination.
  • Maintenance Measurement (MM) − to be used for overall assessment of the NE maintenance process.
  • Memory Backup (MB) − To/from non-volatile memory within the NE.

GR-833 provides detailed descriptions of commands and responses in the TL1 format.

External links

  • TL1 Toolkit, an Open Source Perl module for TL1
  • Telcordia GR-831-CORE - OTGR Section 12.1: Operations Application Messages - Language for Operations Application Messages
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.