Tantalum oxide

Tantalum pentoxide
O2−
Identifiers
CAS number 1314-61-0 YesY
PubChem 518712
ChemSpider 452513 N
Jmol-3D images Image 1
Properties
Molecular formula Ta2O5
Molar mass 441.893 g/mol
Appearance white, odorless powder
Density β-Ta2O5 = 8.18 g/cm3[1]
α-Ta2O5 = 8.37 g/cm3
Melting point

1872 °C, 2145 K, 3402 °F

Solubility in water negligible
Solubility insoluble in organic solvents and most mineral acids, reacts with HF
Band gap 3.8 - 5.3 eV
Refractive index (nD) 2.275
 N (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Tantalum pentoxide, also known as tantalum(V) oxide, is the inorganic compound with the formula . It is a white solid that is insoluble in all solvents but is attacked by strong bases and hydrofluoric acid. is an inert material with has a high refractive index and low absorption (i.e. colourless), which makes it useful for coatings.[2] It is also extensively used in the production of capacitors, due to its high dielectric constant.

Preparation

Occurrence and Refining

Tantalum occurs in the minerals tantalite and columbite (columbium being an archaic name for niobium), which occur in pegmatites, an igneous rock formation. Mixtures of columbite and tantalite are called coltan. Tantalite was discovered by Anders Gustaf Ekeberg at Ytterby, Sweden, and Kimoto, Finland. The minerals microlite and pyrochlore contain approximately 70% and 10% Ta, respectively.

Tantalum ores often contain significant amounts of niobium, which is itself a valuable metal. As such, both metals are extracted so that they may be sold. The overall process is one of hydrometallurgy and begins with a leaching step; in which the ore is treated with hydrofluoric acid and sulfuric acid to produce water soluble hydrogenfluorides. This allows the metals to be separated from the various non-metallic impurities in the rock.

(FeMn)(NbTa)2O6 + 16 HF → H2[TaF7] + H2[NbOF5] + FeF2 + MnF2 + 6 H2O

The tantalum and niobium hydrogenflorides are then removed from the aqueous solution by liquid-liquid extraction using organic solvents, such as cyclohexanone or methyl isobutyl ketone. This step allows the simple removal of various metal impurities (e.g. iron and manganese) which remain in the aqueous phase in the form of fluorides. Separation of the tantalum and niobium is then achieved by pH adjustment. Niobium requires a higher level of acidity to remain soluble in the organic phase and can hence be selectively removed by extraction into less acidic water. The pure tantalum hydrogenfluoride solution is then neutralised with aqueous ammonia to give tantalum hydroxide (Ta(OH)5), which is calcinated to tantalum pentoxide (Ta2O5).[3]

H2[TaF7] + 5 H2O + 7 NH3 → Ta(OH)5 + 7 NH4F
2 Ta(OH)5 → Ta2O5 + 5 H2O

Specialist production

Tantalum oxide is frequently used in electronics, often in the form of thin films. For these applications it can be produced by MOCVD (or related techniques), which involves the hydrolysis of its volatile halides or alkoxides:

Ta2(OEt)10 + 5 H2O → Ta2O5 + 10 EtOH
2 TaCl5 + 5 H2O → Ta2O5 + 10 HCl

Structure and properties

The crystal structure of tantalum pentoxide has been the matter of some debate. The bulk material is disordered,[4] being either amorphous or polycrystalline; with single crystals being difficult to grow. As such Xray crystallography has largely been limited to powder diffraction, which provides less structural information.

At least 2 polymorphs are known to exist. A low temperature form, known as L- or β-Ta2O5, and the high temperature form known as H- or α-Ta2O5. The transition between these two forms is slow and reversible; taking place between 1000-1360°C, with a mixture of structures existing at intermediate temperatures.[4] The structures of both polymorphs consist of chains built from octahedral TaO6 and pentagonal bipyramidal TaO7 polyhedra sharing opposite vertices; which are further joined by edge-sharing.[5][6] The overall crystal system is orthorhombic in both cases, with the space group of β-Ta2O5 being identified as Pna2 by single crystal X-ray diffraction.[7] A high pressure form (Z-Ta2O5) has also been reported, in which the Ta atoms adopt a 7 coordinate geometry to give a monoclinic structure (space group C2).[8]

The difficulty in forming material with a uniform structure has led to variations in its reported properties. Like many metal oxides Ta2O5 is an insulator and its band gap has variously reported as being between 3.8 to 5.3 eV, depending on the method of manufacture.[9][10][11] In general the more amorphous the material the greater its observed band gap. It should be noted that these observed values are significantly higher than those predicted by computational chemistry (2.3 - 3.8 eV).[12][13][14]

Its dielectric constant is typically about ~25[15] although values of over 50 have been reported.[16] In general tantalum pentoxide is considered to be a high-k dielectric material.

Reactions

Ta2O5 does not react appreciably with either HCl or HBr, however it will dissolve in hydrofluoric acid, and reacts with potassium bifluoride and HF according to the following equation:[17][18]

Ta2O5 + 4 KHF2 + 6 HF → 2 K4[TaF7] + 5 H2O

Ta2O5 can be reduced to metallic Ta via the use of metallic reductants such as calcium and aluminium.

Ta2O5 + 5 Ca → 2 Ta + 5 CaO


Uses

In electronics

Owing to its high band gap and dielectric constant, tantalum pentoxide has found a variety of uses in electronics, particularly in tantalum capacitors. These are used in automotive electronics, cell phones, and pagers, electronic circuitry; thin-film components; and high-speed tools. In the 1990s, interest grew in the use of tantalum oxide as a high-k dielectric for DRAM capacitor applications.[19] It is used in on-chip metal-insulator-metal capacitors for high frequency CMOS integrated circuits.

Other uses

Due to its high refractive index, Ta2O5 has been utilized in the fabrication of the glass of photographic lenses.[2][20]

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.