World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0015706431
Reproduction Date:

Title: Tetherin  
Author: World Heritage Encyclopedia
Language: English
Subject: HIV/AIDS, CD153, CD109, IGSF2, LY75
Publisher: World Heritage Encyclopedia


Bone marrow stromal cell antigen 2
Rendering based on PDB .
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; CD317; TETHERIN
External IDs GeneCards:
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Tetherin, also known as bone marrow stromal antigen 2, is a lipid raft associated protein that in humans is encoded by the BST2 gene.[1][2][3] In addition, tetherin has been designated as CD317 (cluster of differentiation 317). This protein is constitutively expressed in mature B cells, plasma cells and plasmacytoid dendritic cells, and in many other cells, it is only expressed as a response to stimuli from IFN pathway.[4]

Gene activation

Tetherin is part of IFN-dependent antiviral response pathway. When the presence of virus and viral components is detected by recognition molecules such as (RIG-I), a cascades of interactions happen between signaling molecules, eventually the signal reaches the nucleus to upregulate the expression of interferon-stimulated genes (ISGs), this in turn activates IFN-a pathway to send the signal to neighboring cells, which causes upregulation in the expression of other ISGs and many viral restriction factors, such as tetherin.[5][6]


Tetherin is a human cellular protein which inhibits retrovirus infection by preventing the diffusion of virus particles after budding from infected cells. Initially discovered as an inhibitor to HIV-1 infection in the absence of Vpu, tetherin has also been shown to inhibit the release of other viruses such as the Lassa and Marburg virions[7][8] suggesting a common mechanism that inhibits enveloped virus release without interaction with viral proteins.


Tetherin is a type 2 integral membrane protein, with the N-terminus in the cytoplasm, one membrane spanning domain, and a C-terminus modified by the addition of a glycosyl-phosphatidylinositol (gpi) anchor.[9] The transmembrane of tetherin is predicted to be a single alpha helix. The ectodomain consists of alpha helical coiled-coil region where the coils are slightly spread apart.[10] Although Tetherin is localized to the lipid rafts on the surface of the cells, they are endocytosed to be sorted through TGN by clathrin-dependent pathway. This is mediated by AP2 binding to the dual-tyrosine motif located in the cytosolic domain of tetherin.[3] When the virion buds from the surface of the cell, one of the tetherin membrane domains is in the new viral membrane, the other remains in the plasma membrane, tethering the virion to the cell. It is antagonized by the viral protein Vpu[11] which is thought to work by targeting tetherin for degradation via the β-TrCP2 dependent pathway.[12][13]

Tetherin exists as a dimer on the surface of cells, and prevention of dimerisation by mutating the cystine residues, prevents tetherin from inhibiting virus release, although it is still detectable in the cell. The stabilization of the protein through disulfide bond within the coiled coil region seems to be important in its function[4]

Interaction with different viruses

Tetherin is known to block many different types of enveloped viruses by tethering the budding virus like particles (VLPs) and inhibiting them from leaving the cell surface. Studies have shown that it is not the amino acid sequence, but the topology of tetherin is required for the tethering of virions on the cell surface.[4] Their unique topology allows them to be in the cell through their N-terminus while using the GPI anchor to attach to budding virions.[10] HIV-1 overcomes this restriction through vpu. Vpu interacts with tethrin by interacting with the protein at its transmembrane domain and recruiting β-TrCP2, which causes ubiquitination and degradation of tetherin. It has been recently shown that tetherin gene variants are associated with HIV disease progression underscoring the role of BST-2 in HIV type 1 infection.[14] Another primate lentivirus, SIV, also, counteracts tetherin by their removal from the plasma membrane.[15][16] KSHV protein K5 also targets tetherin for degradation through ubiquitination.[17] Ebola counteracts tethrin through two mechanism. VP35 of Ebola, inhibits multiple steps of IFN-signaling pathway, which blocks the induction of tetherin as a downstream effect. Also, it has been noted that the full-length Ebola GP may either translocate tetherin or disrupt the structure of tetherin.[5] Sendai virus proteins HN and F direct tethrin to endosomes or proteasome for degradation.[18] CHIKV protein nsP1 interacts with tetherin by disrupting the tetherin-virion complex formation.[19]

Cell-to-cell transmission through virological synapse in human retroviruses is also inhibited by tetherin. Tetherin aggregates virions and downmodulates the infectivity of the virions. It has also been suggested that tetherin may be involved in the structural integrity of the virological synapse.[4]

Other functions

Tetherin has also been predicted to be involved in cell adhesion and cell migration. Recently it has, also, been identified as the protein that help stabilize lipid rafts by joining nearby lipid rafts to form a cluster.[20] For some viruses, such as Dengue virus, tetherin inhibits the budding of virions as well as cell-to-cell transmission of the virus.[21] Interestingly, for human cytomegalovirus (HCMV), tetherin promotes entry of the virus, especially during cell differentiation. It has also been shown that tetherin is incorporated into newly formed virions.[22]


  1. ^
  2. ^
  3. ^ a b
  4. ^ a b c d
  5. ^ a b
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^ a b
  11. ^
  12. ^
  13. ^
  14. ^
  15. ^
  16. ^
  17. ^
  18. ^
  19. ^
  20. ^
  21. ^
  22. ^

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.