World Library  
Flag as Inappropriate
Email this Article

Titanium trichloride

Article Id: WHEBN0004546089
Reproduction Date:

Title: Titanium trichloride  
Author: World Heritage Encyclopedia
Language: English
Subject: Heterogeneous catalysis, McMurry reaction, Titanium chloride, List of UN numbers 2401 to 2500, List of UN numbers 2801 to 2900
Publisher: World Heritage Encyclopedia

Titanium trichloride

Titanium(III) chloride

β-TiCl3 viewed along the chains

TiCl3 solution
CAS number 7705-07-9 YesY
PubChem 62646
ChemSpider 56398 YesY
EC number 231-728-9
RTECS number XR1924000
Jmol-3D images Image 1
Molecular formula TiCl3
Molar mass 154.225 g/mol
Appearance red-violet crystals
Density 2.64 g/cm3
Melting point

425 °C (decomposes)

Boiling point

960 °C

Solubility in water very soluble
Solubility soluble in acetone, acetonitrile, certain amines;
insoluble in ether and hydrocarbons
Refractive index (nD) 1.4856
MSDS External MSDS
EU Index Not listed
Main hazards Corrosive
Related compounds
Other anions Titanium(III) fluoride
Titanium(III) bromide
Titanium(III) iodide
Other cations Scandium(III) chloride
Chromium(III) chloride
Vanadium(III) chloride
Related compounds Titanium(IV) chloride
Titanium(II) chloride
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

Structure and bonding

In TiCl3, each Ti atom has one d electron, rendering its derivatives paramagnetic, i.e. the substance is attracted into a magnetic field. The trihalides of hafnium and zirconium: in these heavier metals engage in metal-metal bonding. Solutions of titanium(III) chloride are violet, which arises from excitations of its d-electron. The colour is not very intense since the transition is forbidden by the Laporte selection rule.

Four solid forms or polymorphs of TiCl3 are known. All feature titanium in an octahedral coordination sphere. These forms can be distinguished by crystallography as well as by their magnetic properties, which probes exchange interactions. β-TiCl3 crystallizes as brown needles. Its structure consists of chains of TiCl6 octahedra that share opposite faces such that the closest Ti—Ti contact is 2.91 Å. This short distance indicates strong metal-metal interactions (See Figure in upper right). The three violet "layered" forms, named for their color and their tendency to flake, are called alpha, gamma, and delta. In α-TiCl3, the chloride anions are hexagonal close-packed. In γ-TiCl3, the chlorides anions are cubic close-packed. Finally, disorder in shift successions, causes an intermediate between alpha and gamma structures, called the delta (δ) form. The TiCl6 share edges in each form, with 3.60 Å being the shortest distance between the titanium cations. This large distance between titanium cations precludes direct metal-metal bonding. In contrast, direct Zr-Zr bonding is indicated in zirconium(III) chloride. The difference between the Zr(III) and Ti(III) materials is attributed in part to the relative radii of these metal centers.[1]

Synthesis and reactivity

TiCl3 is produced usually by reduction of titanium(IV) chloride. Older reduction methods used hydrogen:[2]

2 TiCl4 + H2 → 2 HCl + 2 TiCl3

It is conveniently reduced with aluminium and sold as a mixture with aluminium trichloride, TiCl3·AlCl3. This mixture can be separated to afford TiCl3(THF)3.[3]

Its hydrate can be synthesised by dissolving titanium in aqueous hydrochloric acid.

2 Ti + 6 HCl + 3 H2O → 2 TiCl3(H2O)3 + 3 H2

TiCl3 forms a variety of coordination complexes, most of which are octahedral. The light-blue crystalline adduct TiCl3(THF)3 forms when TiCl3 is treated with tetrahydrofuran.[4]

TiCl3 + 3 C4H8O → TiCl3(OC4H8)3

An analogous dark green complex arises from complexation with dimethylamine. In a reaction where all ligands are exchanged, TiCl3 is a precursor to the tris acetylacetonate complex.

The more reduced titanium(II) chloride is prepared by the thermal disproportionation of TiCl3 at 500 °C. The equilibrium is driven by the loss of volatile TiCl4:[5]

2 TiCl3 → TiCl2 + TiCl4

The ternary halides, such as A3TiCl6, have structures that depend on the cation (A+) added.[6] Caesium chloride treated with titanium(II) chloride and hexachlorobenzene produces crystalline CsTi2Cl7. In these structures Ti3+ exhibits octahedral coordination geometry.[7]


TiCl3 is the main Ziegler-Natta catalyst, responsible for most industrial production of polypropylene. The catalytic activities depend strongly on the polymorph and the method of preparation.[8]

Laboratory use

TiCl3 is also a reagent in organic synthesis, useful for reductive coupling reactions, often in the presence of added reducing agents such as zinc. It reduces oximes to imines.[9] Titanium trichloride can reduce nitrate to ammonium ion thereby allowing for the sequential analysis of nitrate and ammonia.[10] Slow deterioration occurs in air-exposed titanium trichloride, often resulting in erratic results, e.g. in reductive coupling reactions.[11]


TiCl3 and most of its complexes are typically handled under an air-free conditions to prevent reactions with oxygen and moisture. Depending on the method for its preparation, samples of TiCl3 can be relatively air stable or pyrophoric.[2][12]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.