World Library  
Flag as Inappropriate
Email this Article

Trellis modulation

Article Id: WHEBN0000479030
Reproduction Date:

Title: Trellis modulation  
Author: World Heritage Encyclopedia
Language: English
Subject: 8VSB, Modulation, Modem, Trellis, G.992.1
Collection: Telecommunication Theory, Telecommunications Engineering
Publisher: World Heritage Encyclopedia

Trellis modulation

In telecommunication, trellis modulation (also known as trellis coded modulation, or simply TCM) is a modulation scheme that transmits information with high efficiency over band-limited channels such as telephone lines. Gottfried Ungerboeck invented trellis modulation while working for IBM in the 1970s, and first described it in a conference paper in 1976. It went largely unnoticed, however, until he published a new, detailed exposition in 1982 that achieved sudden and widespread recognition.

In the late 1980s, modems operating over plain old telephone service (POTS) typically achieved 9.6 kbit/s by employing 4 bits per symbol QAM modulation at 2,400 baud (symbols/second). This bit rate ceiling existed despite the best efforts of many researchers, and some engineers predicted that without a major upgrade of the public phone infrastructure, the maximum achievable rate for a POTS modem might be 14 kbit/s for two-way communication (3,429 baud × 4 bits/symbol, using QAM).

14 kbit/s is only 40% of the theoretical maximum bit rate predicted by Shannon's Theorem for POTS lines (approximately 35 kbit/s). Ungerboeck's theories demonstrated that there was considerable untapped potential in the system, and by applying the concept to new mode standards, speed rapidly increased to 14.4, 28.8 and ultimately 33.6 kbit/s.


  • A new modulation method 1
  • See also 2
  • In popular culture 3
  • Relevant papers 4
  • References 5
  • External links 6

A new modulation method

Trellis diagram

The name trellis derives from the fact that a state diagram of the technique closely resembles a trellis lattice. The scheme is basically a convolutional code of rates (r,r+1). Ungerboeck's unique contribution is to apply the parity check for each symbol, instead of the older technique of applying it to the bit stream then modulating the bits. He called the key idea mapping by set partitions. This idea groups symbols in a tree-like structure, then separates them into two limbs of equal size. At each "limb" of the tree, the symbols are further apart.

Though hard to visualize in multiple dimensions, a simple one-dimension example illustrates the basic procedure. Suppose the symbols are located at [1, 2, 3, 4, ...]. Place all odd symbols in one group, and all even symbols in the second group. (This is not quite accurate, because Ungerboeck was looking at the two dimensional problem, but the principle is the same.) Take every other symbol in each group and repeat the procedure for each tree limb. He next described a method of assigning the encoded bit stream onto the symbols in a very systematic procedure. Once this procedure was fully described, his next step was to program the algorithms into a computer and let the computer search for the best codes. The results were astonishing. Even the most simple code (4 state) produced error rates nearly one one-thousandth of an equivalent uncoded system. For two years Ungerboeck kept these results private and only conveyed them to close colleagues. Finally, in 1982, Ungerboeck published a paper describing the principles of trellis modulation.

A flurry of research activity ensued, and by 1990 the International Telecommunication Union had published modem standards for the first trellis-modulated modem at 14.4 kilobits/s (2,400 baud and 6 bits per symbol). Over the next several years further advances in encoding, plus a corresponding symbol rate increase from 2,400 to 3,429 baud, allowed modems to achieve rates up to 34.3 kilobits/s (limited by maximum power regulations to 33.8 kilobits/s). Today, the most common trellis-modulated V.34 modems use a 4-dimensional set partition—achieved by treating two two-dimensional symbols as a single lattice. This set uses 8, 16, or 32 state convolutional codes to squeeze the equivalent of 6 to 10 bits into each symbol the modem sends (for example, 2,400 baud × 8 bits/symbol = 19,200 bit/s).

Once manufacturers introduced modems with trellis modulation, transmission rates increased to the point where interactive transfer of multimedia over the telephone became feasible (a 200 kilobyte image and a 5 megabyte song could be downloaded in less than 1 minute and 30 minutes, respectively). Sharing a floppy disk via a BBS could be done in just a few minutes, instead of an hour. Thus Ungerboeck's invention played a key role in the Information Age.

See also

In popular culture

In the December 8, 1991 edition of the Dilbert comic strip, Scott Adams refers to the mere mentioning of trellis code modulation as a means for stopping a casual conversation cold.[1]

Relevant papers

  • G. Ungerboeck, "Channel coding with multilevel/phase signals," IEEE Trans. Inform. Theory, vol. IT-28, pp. 55–67, 1982.
  • G. Ungerboeck, "Trellis-coded modulation with redundant signal sets part I: introduction," IEEE Communications Magazine, vol. 25-2, pp. 5–11, 1987.


  1. ^ "Dilbert Comic Strip". 

External links

  • TCM tutorial
  • Gottfried Ungerböck Oral History, IEEE Global History Network
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.