World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003454494
Reproduction Date:

Title: Triazene  
Author: World Heritage Encyclopedia
Language: English
Subject: Chemotherapy, Cell-cycle nonspecific antineoplastic agents, Hazardous drugs, Thiopurine, Pyrimidine analogue
Collection: Functional Groups, Nitrogen Hydrides
Publisher: World Heritage Encyclopedia


Structural formula of triazene
Space-filling model of the triazene molecule
IUPAC name
Systematic IUPAC name
ChemSpider  Y
Jmol-3D images Image
Molar mass 45.05 g·mol−1
NFPA 704
Related compounds
Other anions
Related Binary azanes
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Triazene, also known as triazanylene, is an N3H3. It has one double bond, and is the second-simplest member of the azene class of hydronitrogen compounds, and is not found in nature. It is also the name given to the functional group consisting of an amine directly bonding to an azo group, i.e. with the linkage R1R2N-N=NR3 where R1, R2 and R3 are substituents. The functional group is also called a diazoamino group (but only one of the two substituents R1 and R3 may be hydrogen) because it is related to a diazo group.


  • Properties 1
  • Medical uses 2
  • Production 3
  • Derivatives 4
  • Reactions 5
  • See also 6
  • References 7
  • External links 8


At room temperature, triazene is a gas and, as with many other azenes, it is also coloured with a strong and unpleasant smell. Triazene has a higher density and boiling point than diazene due to its greater size. It has a slightly lower boiling point than triazane and is thus more volatile. It has strong polar bonds, and the molecule has a large dipole moment due to its reduced symmetry.

Triazene has the same empirical formula as cyclotriazane but their atoms are connected in different ways, making these molecules structural isomers.

Medical uses

Some anti-cancer medications are called triazenes because they contain a triazene functional group. The triazenes are a group of alkylating agents used to treat cancer. Examples include dacarbazine and temozolamide. They work by methylating guanine at the O-6 and N-7 position.


To date, the only proven method to produce triazene is the spontaneous decomposition of tetrazane into triazene and ammonia.


General structure of a triazene

A well-known example is of a triazene is diphenyl derivative,[2] PhNH-N=NPh (m.p. 100 °C, CAS #136-35-6). It is prepared from phenyldiazonium salts and aniline in the presence of base:

PhN2+ + PhNH2 → PhNHN=NPh + H+


Triazenes have been used as in situ diazonium source. Triazenes decompose in the presence of protonating or alkylating agents into quaternary amines and diazonium salts. A strategy for the protection and deprotection of sensitive secondary amines is based on this principle.[3]

Triazenes can be reacted with sodium sulfide in the presence of trichloroacetic acid to give the corresponding thiophenols.[4]

Triazene cleavage

In another example, the synthesis of cinnoline was accomplished by Richter reaction of triazene-masked diazonium ion.[5]

See also


  1. ^ "triazene (CHEBI:35468)". Chemical Entities of Biological Interest. EMBL-EBI. 
  2. ^ Hartman, W. W.; Dickey, J. B. (1934). "Diazoaminobenzene".  
  3. ^ Lazny, R.; Poplawski, J.; Köbberling, J.; Enders, D.; Bräse, S. (1999). "Triazenes: A Useful Protecting Strategy for Sensitive Secondary Amines". Synlett 1999 (8): 1304–6.  
  4. ^ Kazem-Rostami, M.; Khazaei, A.; Moosavi-Zare, A. R.; Bayat, M.; Saednia, S. (2012). "Novel One-Pot Synthesis of Thiophenols from Related Triazenes under Mild Conditions". Synlett 23 (13): 1893–6.  
  5. ^ Goeminne, A.; Scammells, P. J.; Devine, S. M.; Flynn, B. L. (2010). "Richter cyclization and co-cyclization reactions of triazene-masked diazonium ions". Tetrahedron Letters 51 (52): 6882–5.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.