World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000598619
Reproduction Date:

Title: Troponin  
Author: World Heritage Encyclopedia
Language: English
Subject: Troponin C, Troponin I, Troponin T, Myocardial infarction, Cytoskeleton
Collection: Cytoskeleton, Muscular System, Proteins
Publisher: World Heritage Encyclopedia


Ribbon representation of the human cardiac troponin core complex (52 kDa core) in the calcium-saturated form. Blue = troponin C; green = troponin I; magenta = troponin T.[1]

Troponin is a complex of three regulatory proteins (troponin C, troponin I, and troponin T) that is integral to muscle contraction[2] in skeletal muscle and cardiac muscle, but not smooth muscle.

Discussions of troponin often pertain to its functional characteristics and/or to its usefulness as a diagnostic marker or therapeutic target[3] for various heart disorders in particular as a highly specific marker for myocardial infarction or heart muscle cell death.


  • Diagnostic use 1
    • Cardiac conditions 1.1
    • Non-cardiac conditions 1.2
    • Prognostic use 1.3
  • Detection 2
  • Function 3
  • Physiology 4
  • Relation with contractile function and heart failure 5
  • References 6
  • See also 7
  • External links 8

Diagnostic use

An increased level of the cardiac protein isoform of troponin circulating in the blood has been shown to be a biomarker of heart disorders, the most important of which is myocardial infarction . Raised troponin levels indicate cardiac muscle cell death as the enzyme is released into the blood upon injury to the heart.

Cardiac conditions

Certain subtypes of troponin (cardiac I and T) are very sensitive and specific indicators of damage to the heart muscle (myocardium). They are measured in the blood to differentiate between unstable angina and myocardial infarction (heart attack) in people with chest pain or acute coronary syndrome. A person who recently had a myocardial infarction would have an area of damaged heart muscle and elevated cardiac troponin levels in the blood.[4] This can also occur in people with coronary vasospasm, a type of myocardial infarction involving severe constriction of the cardiac blood vessels. After a myocardial infarction troponins may remain high for up to 2 weeks.[5]

It is important to note that cardiac troponins are a marker of all heart muscle damage, not just myocardial infarction, which is the most severe form of heart disorder. However, diagnostic criteria for raised troponin indicating myocardial infarction is currently set by the WHO at a threshold of 2 ug or higher. Critical levels of other cardiac biomarkers are also relevant, such as Creatine Kinase. Other conditions that directly or indirectly lead to heart muscle damage and death can also increase troponin levels, such as renal failure[6][7] Severe tachycardia (for example due to supraventricular tachycardia) in an individual with normal coronary arteries can also lead to increased troponins for example, it is presumed due to increased oxygen demand and inadequate supply to the heart muscle.

Troponins are also increased in patients with heart failure, where they also predict mortality and ventricular rhythm abnormalities. They can rise in inflammatory conditions such as myocarditis and pericarditis with heart muscle involvement (which is then termed myopericarditis). Troponins can also indicate several forms of cardiomyopathy, such as dilated cardiomyopathy, hypertrophic cardiomyopathy or (left) ventricular hypertrophy, peripartum cardiomyopathy, Takotsubo cardiomyopathy, or infiltrative disorders such as cardiac amyloidosis.

Heart injury with increased troponins also occurs in cardiac contusion, defibrillation and internal or external cardioversion. Troponins are commonly increased in several procedures such as cardiac surgery and heart transplantation, closure of atrial septal defects, percutaneous coronary intervention, or radiofrequency ablation.

Non-cardiac conditions

The distinction between cardiac and non-cardiac conditions is somewhat artificial; the conditions listed below are not primary heart diseases, but they exert indirect effects on the heart muscle.

Troponins are increased in around 40% of patients with critical illnesses such as sepsis. There is an increased risk of mortality and length of stay in the intensive-care unit in these patients.[8] In severe gastrointestinal bleeding, there can also be a mismatch between oxygen demand and supply of the myocardium.

Chemotherapy agents can exert toxic effects on the heart (examples include anthracycline, cyclophosphamide, 5-fluorouracil, and cisplatin). Several toxins and venoms can also lead to heart muscle injury (scorpion venom, snake venom, and venom from jellyfish and centipedes). Carbon monoxide poisoning or cyanide poisoning can also be accompanied by release of troponins due to hypoxic cardiotoxic effects. Cardiac injury occurs in about one-third of severe CO poisoning cases, and troponin screening is appropriate in these patients.[9][10]

Some patients with dissection of the ascending aorta have elevated troponins, and increased hemodynamic stress has been suggested as a mechanism.[11]

In both primary pulmonary hypertension, pulmonary embolism, and acute exacerbations of chronic obstructive pulmonary disease (COPD), right ventricular strain with increased wall tension and ischemia. Of course, patients with COPD exacerbations might also have concurrent myocardial infarction or pulmonary embolism, so care has to be taken to attribute increased troponin levels to COPD.

Central nervous system disorders can lead to increased sympathetic tone and/or catecholamine release, which lead to cardiac overstimulation. This is seen in subarachnoid hemorrhage, stroke, intracranial hemorrhage, and (generalized) seizures (in patients with epilepsy or eclampsia, for example).

Patients with end-stage renal disease can have chronically elevated troponin T levels, which are linked to a poorer prognosis.[12][13] Troponin I is less likely to be falsely elevated.[12]

Strenuous endurance exercise such as marathons or triathlons can lead to increased troponin levels in up to one-third of subjects, but it is not linked to adverse health effects in these competitors.[14][15][16] High troponin T levels have also been reported in patients with inflammatory muscle diseases such as polymyositis or dermatomyositis.[17][18] Troponins are also increased in rhabdomyolysis.

In hypertensive disorders of pregnancy such as preeclampsia, elevated troponin levels indicate some degree of myofibrillary damage.[19][20]

Cardiac troponin T and I can be used to monitor drug and toxin-induced cardiomyocyte toxicity. .[21]

Prognostic use

Raised troponin levels are prognostically important in many of the conditions in which they are used for diagnosis.[22]

In a community-based cohort study indicating the importance of silent cardiac damage, troponin I has been shown to predict mortality and first coronary heart disease event in men free from cardiovascular disease at baseline.[23]


Cardiac troponin T and I are measured by immunoassay methods.[24][25]

  • Due to patent regulations, a single manufacturer (Roche Diagnostics) distributes cTnT.
  • A host of diagnostic companies make cTnI immunoassay methods available on many different immunoassay platforms.[25]

Troponin elevation following cardiac cell necrosis starts within 2-3 hours, peaks in approx. 24 hours, and persists for 1-2 weeks.[26]


Troponin is attached to the protein tropomyosin and lies within the groove between actin filaments in muscle tissue. In a relaxed muscle, tropomyosin blocks the attachment site for the myosin crossbridge, thus preventing contraction. When the muscle cell is stimulated to contract by an action potential, calcium channels open in the sarcoplasmic membrane and release calcium into the sarcoplasm. Some of this calcium attaches to troponin, which causes it to change shape, exposing binding sites for myosin (active sites) on the actin filaments. Myosin's binding to actin causes crossbridge formation, and contraction of the muscle begins.

Troponin activation. Troponin C (red) binds Ca2+, which stabilizes the activated state, where troponin I (yellow) is no longer bound to actin. Troponin T (blue) anchors the complex on tropomyosin.

Troponin is found in both skeletal muscle and cardiac muscle, but the specific versions of troponin differ between types of muscle. The main difference is that the TnC subunit of troponin in skeletal muscle has four calcium ion-binding sites, whereas in cardiac muscle there are only three. Views on the actual amount of calcium that binds to troponin vary from expert to expert and source to source.


In both cardiac and skeletal muscles, muscular force production is controlled primarily by changes in the intracellular calcium concentration. In general, when calcium rises, the muscles contract and, when calcium falls, the muscles relax.

Troponin is a component of thin filaments (along with tropomyosin is rolled away from myosin-binding sites on actin, allowing myosin to attach to the thin filament and produce force and/or shorten the sarcomere.

Troponin I has also been shown to inhibit angiogenesis in vivo and in vitro.[27]

Individual subunits serve different functions:

  • Troponin C binds to calcium ions to produce a conformational change in TnI
  • Troponin T binds to tropomyosin, interlocking them to form a troponin-tropomyosin complex
  • Troponin I binds to actin in thin myofilaments to hold the troponin-tropomyosin complex in place

Smooth muscle does not have troponin.[28]

Relation with contractile function and heart failure

Mutations in the cardiac troponin subunits can result in cardiomyopathies, including familial hypertrophic cardiomyopathy.[29]


  1. ^ ​; Takeda S, Yamashita A, Maeda K, and Maeda Y (2003). "Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form". Nature 424 (6944): 35–41.  ; rendered with PyMOL
  2. ^ "troponin" at Dorland's Medical Dictionary
  3. ^ Robertson I, Sun YB, MX Li, BD Sykes (2010). "A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex". Journal of Molecular and Cellular Cardiology 49 (6): 1031–1041.  
  4. ^ Antman EM, Tanasijevic MJ, Thompson B, et al. (October 1996). "Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes". N. Engl. J. Med. 335 (18): 1342–9.  
  5. ^ Amsterdam, E. A.; Wenger, N. K.; Brindis, R. G.; Casey, D. E.; Ganiats, T. G.; Holmes, D. R.; Jaffe, A. S.; Jneid, H.; Kelly, R. F.; Kontos, M. C.; Levine, G. N.; Liebson, P. R.; Mukherjee, D.; Peterson, E. D.; Sabatine, M. S.; Smalling, R. W.; Zieman, S. J. (23 September 2014). "2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". Circulation 130: e344–e426.  
  6. ^ Ammann P, Pfisterer M, Fehr T, Rickli H (May 2004). "Raised cardiac troponins". BMJ 328 (7447): 1028–9.  
  7. ^ Tsai SH, Chu SJ, Hsu CW, Cheng SM, Yang SP (March 2008). "Use and interpretation of cardiac troponins in the ED". Am J Emerg Med 26 (3): 331–41.  
  8. ^ Lim W, Qushmaq I, Devereaux PJ, et al. (2006). "Elevated cardiac troponin measurements in critically ill patients". Arch. Intern. Med. 166 (22): 2446–54.  
  9. ^ Henry CR, Satran D, Lindgren B, Adkinson C, Nicholson CI, Henry TD (January 2006). "Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning". JAMA 295 (4): 398–402.  
  10. ^ Satran D, Henry CR, Adkinson C, Nicholson CI, Bracha Y, Henry TD (May 2005). "Cardiovascular manifestations of moderate to severe carbon monoxide poisoning". J. Am. Coll. Cardiol. 45 (9): 1513–6.  
  11. ^ Bonnefoy E, Godon P, Kirkorian G, Chabaud S, Touboul P (April 2005). "Significance of serum troponin I elevation in patients with acute aortic dissection of the ascending aorta". Acta Cardiol 60 (2): 165–70.  
  12. ^ a b Needham DM, Shufelt KA, Tomlinson G, Scholey JW, Newton GE (October 2004). "Troponin I and T levels in renal failure patients without acute coronary syndrome: a systematic review of the literature". Can J Cardiol 20 (12): 1212–8.  
  13. ^ Khan NA, Hemmelgarn BR, Tonelli M, Thompson CR, Levin A (November 2005). "Prognostic value of troponin T and I among asymptomatic patients with end-stage renal disease: a meta-analysis". Circulation 112 (20): 3088–96.  
  14. ^ Rifai N, Douglas PS, O'Toole M, Rimm E, Ginsburg GS (April 1999). "Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon". Am. J. Cardiol. 83 (7): 1085–9.  
  15. ^ Neumayr G, Gaenzer H, Pfister R, et al. (February 2001). "Plasma levels of cardiac troponin I after prolonged strenuous endurance exercise". Am. J. Cardiol. 87 (3): 369–71, A10.  
  16. ^ Urhausen A, Scharhag J, Herrmann M, Kindermann W (September 2004). "Clinical significance of increased cardiac troponins T and I in participants of ultra-endurance events". Am. J. Cardiol. 94 (5): 696–8.  
  17. ^ Kobayashi S, Tanaka M, Tamura N, Hashimoto H, Hirose S (September 1992). "Serum cardiac troponin T in polymyositis/dermatomyositis". Lancet 340 (8821): 726.  
  18. ^ Erlacher P, Lercher A, Falkensammer J, et al. (April 2001). "Cardiac troponin and beta-type myosin heavy chain concentrations in patients with polymyositis or dermatomyositis". Clin. Chim. Acta 306 (1-2): 27–33.  
  19. ^ Fleming SM, O'Gorman T, Finn J, Grimes H, Daly K, Morrison JJ (November 2000). "Cardiac troponin I in pre-eclampsia and gestational hypertension". BJOG 107 (11): 1417–20.  
  20. ^ Morton A (July 2004). "Raised cardiac troponins: troponin is raised in pre-eclampsia". BMJ 329 (7457): 111.  
  21. ^ Gaze DC,Collinson PO; Collinson, PO (December 2005). "Cardiac troponins as biomarkers of drug- and toxin-induced cardiac toxicity and cardioprotection.". Expert Opin Drug Metab Toxicol. 1 (4): 715–25.  
  22. ^ Mannu, GS (August 2014). "The non-cardiac use and significance of cardiac troponins.". Scottish medical journal 59 (3): 172–8.  
  23. ^ Zethelius B, Johnston N, Venge P (February 2006). "Troponin I as a predictor of coronary heart disease and mortality in 70-year-old men: a community-based cohort study". Circulation 113 (8): 1071–8.  
  24. ^ Melanson SE, Tanasijevic MJ, Jarolim P (October 2007). "Cardiac troponin assays: a view from the clinical chemistry laboratory". Circulation 116 (18): e501–4.  
  25. ^ a b Collinson PO, Boa FG, Gaze DC (September 2001). "Measurement of cardiac troponins". Ann. Clin. Biochem. 38 (Pt 5): 423–49.  
  26. ^ Patil, H.; Vaidya, O.; Bogart, D. (2011). "A Review of Causes and Systemic Approach to Cardiac Troponin Elevation". Clin Cardiol 34: 723–728.  
  27. ^ Moses, Marsha A.; Wiederschain D.; Wu I.; Fernandez, C.; Ghazizadeh V.; Lane W.; Flynn E.; Sytkowski A.; Tao T.; Langer R. (1999). "Troponin I is present in human cartilage and inhibits angiogenesis". Proceedings of the National Academy of Sciences of the United States of America 96 (6): 2645–2650.  
  28. ^ Troponins at eMedicine
  29. ^ Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (May 2010). "Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function?". J. Mol. Cell. Cardiol. 48 (5): 882–92.  

See also

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.