World Library  
Flag as Inappropriate
Email this Article

Truncated square tiling

 

Truncated square tiling

Truncated square tiling
Truncated square tiling
Type Semiregular tiling
Vertex configuration
4.8.8
Schläfli symbol t{4,4}
tr{4,4}
Wythoff symbol 2 | 4 4
4 4 2 |
Coxeter diagram
Symmetry p4m, [4,4], (*442)
Rotation symmetry p4, [4,4]+, (442)
Bowers acronym Tosquat
Dual Tetrakis square tiling
Properties Vertex-transitive

In geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}.

Conway calls it a truncated quadrille, constructed as a truncation operation applied to a square tiling (quadrille).

Other names used for this pattern include Mediterranean tiling and octagonal tiling, which is often represented by smaller squares, and nonregular octagons which alternate long and short edges.

There are 3 regular and 8 semiregular tilings in the plane.

Contents

  • Uniform colorings 1
  • Circle packing 2
  • Variations 3
  • Related polyhedra and tilings 4
    • Wythoff constructions from square tiling 4.1
    • Related tilings in other symmetries 4.2
    • Tetrakis square tiling 4.3
  • See also 5
  • References 6
  • External links 7

Uniform colorings

There are two distinct uniform colorings of a truncated square tiling. (Naming the colors by indices around a vertex (4.8.8): 122, 123.)


2 colors: 122

3 colors: 123

Circle packing

The truncated square tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 3 other circles in the packing (kissing number).[1] Since there is an even number of sides of all the polygons, the circles can be alternately colored as shown below.

Variations

One variations on this pattern, often called a Mediterranean pattern, is shown in stone tiles with smaller squares and diagonally aligned with the borders. Other variations stretch the squares or octagons.

The Pythagorean tiling alternates large and small squares, and may be seen as topologically identical to the truncated square tiling. The squares are rotated 45 degrees and octagons are distorted into squares with mid-edge vertices.

A weaving pattern also has the same topology, with octagons flattened rectangles.

p4m, (*442) pmm (*2222) p4g, (4*2) cmm, (2*22)
p4m, (*442) pmm (*2222) p4, (442) p4g, (4*2) cmm, (2*22)
Mediterranean Stretched Pythagorean Weaving

Related polyhedra and tilings

The truncated square tiling is topologically related as a part of sequence of uniform polyhedra and tilings with vertex figures 4.2n.2n, extending into the hyperbolic plane:

*n42 symmetry mutation of truncated tilings: 4.2n.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Truncated
figures
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
n-kis
figures
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞

The 3-dimensional bitruncated cubic honeycomb projected into the plane shows two copies of a truncated tiling. In the plane it can be represented by a compound tiling, or combined can be seen as a chamfered square tiling.




+

Wythoff constructions from square tiling

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, all 8 forms are distinct. However treating faces identically, there are only three unique topologically forms: square tiling, truncated square tiling, snub square tiling.

Uniform tilings based on square tiling symmetry
Symmetry: [4,4], (*442) [4,4]+, (442) [4,4+], (4*2)
{4,4} t{4,4} r{4,4} t{4,4} {4,4} rr{4,4} tr{4,4} sr{4,4} s{4,4}
Uniform duals
V4.4.4.4 V4.8.8 V4.4.4.4 V4.8.8 V4.4.4.4 V4.4.4.4 V4.8.8 V3.3.4.3.4

Related tilings in other symmetries

*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Omnitruncated
figure

4.8.4

4.8.6

4.8.8

4.8.10

4.8.12

4.8.14

4.8.16

4.8.∞
Omnitruncated
duals

V4.8.4

V4.8.6

V4.8.8

V4.8.10

V4.8.12

V4.8.14

V4.8.16

V4.8.∞
*nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n
Symmetry
*nn2
[n,n]
Spherical Euclidean Compact hyperbolic Paracomp.
*222
[2,2]
*332
[3,3]
*442
[4,4]
*552
[5,5]
*662
[6,6]
*772
[7,7]
*882
[8,8]...
*∞∞2
[∞,∞]
Figure
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
Dual
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞

Tetrakis square tiling

The tetrakis square tiling is the tiling of the Euclidean plane dual to the truncated square tiling. It can be constructed square tiling with each square divided into four isosceles right triangles from the center point, forming an infinite arrangement of lines. It can also be formed by subdividing each square of a grid into two triangles by a diagonal, with the diagonals alternating in direction, or by overlaying two square grids, one rotated by 45 degrees from the other and scaled by a factor of √2.

Conway calls it a kisquadrille,[2] represented by a kis operation that adds a center point and triangles to replace the faces of a square tiling (quadrille). It is also called the Union Jack lattice because of the resemblance to the UK flag of the triangles surrounding its degree-8 vertices.[3]

See also

References

  1. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, circle pattern H
  2. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [3] (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)
  3. ^ Stephenson, John, "Ising Model with Antiferromagnetic Next-Nearest-Neighbor Coupling: Spin Correlations and Disorder Points", Phys. Rev. B 1 (11): 4405–4409,  .
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [4]
  • , p. 58-65) Regular and uniform tilings (Chapter 2.1:  
  •  
  • Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, ISBN 978-0866514613, pp. 50–56

External links

  • http://www.decrete.com/stencils/octagontile
  • Weisstein, Eric W., "Semiregular tessellation", MathWorld.
  • Richard Klitzing, 2D Euclidean tilings, o4x4x - tosquat - O6
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.