World Library  
Flag as Inappropriate
Email this Article

Truncated trihexagonal tiling


Truncated trihexagonal tiling

Truncated trihexagonal tiling
Truncated trihexagonal tiling
Type Semiregular tiling
Vertex configuration
Schläfli symbol tr{6,3}
Wythoff symbol 2 6 3 |
Coxeter diagram
Symmetry p6m, [6,3], (*632)
Rotation symmetry p6, [6,3]+, (632)
Bowers acronym Othat
Dual Kisrhombille tiling
Properties Vertex-transitive

In geometry, the truncated trihexagonal tiling is one of eight semiregular tilings of the Euclidean plane. There are one square, one hexagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{3,6}.


  • Other names 1
  • Uniform colorings 2
  • Related 2-uniform tilings 3
  • Circle packing 4
  • Kisrhombille tiling 5
    • Construction from rhombille tiling 5.1
    • Practical uses 5.2
  • Symmetry 6
  • Related polyhedra and tilings 7
    • Symmetry mutations 7.1
  • See also 8
  • Notes 9
  • References 10
  • External links 11

Other names

  • Great rhombitrihexagonal tiling
  • Rhombitruncated trihexagonal tiling
  • Omnitruncated hexagonal tiling, omnitruncated triangular tiling
  • Conway calls it a truncated hexadeltille, constructed as a truncation operation applied to a trihexagonal tiling (hexadeltille).[1]

Uniform colorings

There is only one uniform coloring of a truncated trihexagonal tiling, with faces colored by polygon sides. A 2-uniform coloring has two colors of hexagons. 3-uniform colorings can have 3 colors of dodecagons or 3 colors of squares.

1-uniform 2-uniform 3-uniform
Symmetry p6m, [6,3], (*632) p3m1, [3[3]], (*333)

Related 2-uniform tilings

The truncated trihexagonal tiling has three related 2-uniform tilings, one being a 2-uniform coloring of the semiregular rhombitrihexagonal tiling. The first dissects the hexagons into 6 triangles. The other two dissect the dodecagons into a central hexagon and surrounding triangles and square, in two different orientations.[2][3]

Semiregular Dissected 2-uniform 3-uniform

Dissected Semiregular 2-uniform

Circle packing

The Truncated trihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 3 other circles in the packing (kissing number).[4] Circles can be alternatedly colored in this packing with an even number of sides of all the regular polygons of this tiling.

The gap inside each hexagon allows for one circle, and each dodecagon allows for 7 circles, creating a dense 4-uniform packing.

Kisrhombille tiling

Kisrhombille tiling
Type Dual semiregular tiling
Coxeter diagram
Faces 30-60-90 triangle
Face configuration V4.6.12
Symmetry group p6m, [6,3], (*632)
Rotation group p6, [6,3]+, (632)
Dual truncated trihexagonal tiling
Properties face-transitive

The kisrhombille tiling or 3-6 kisrhombille tiling is a tiling of the Euclidean plane. It is constructed by congruent 30-60 degree right triangles with 4, 6, and 12 triangles meeting at each vertex.

Construction from rhombille tiling

Conway calls it a kisrhombille[1] for his kis vertex bisector operation applied to the rhombille tiling. More specifically it can be called a 3-6 kisrhombille, to distinguish it from other similar hyperbolic tilings, like 3-7 kisrhombille.

The related rhombille tiling becomes the kisrhombille by subdividing the rhombic faces on it axes into four triangle faces

It can be seen as an equilateral hexagonal tiling with each hexagon divided into 12 triangles from the center point. (Alternately it can be seen as a bisected triangular tiling divided into 6 triangles, or as an infinite arrangement of lines in six parallel families.)

It is labeled V4.6.12 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 12 triangles.

Practical uses

The kisrhombille tiling is a useful starting point for making paper models of deltahedra, as each of the equilateral triangles can serve as faces, the edges of which adjoin isosceles triangles that can serve as tabs for gluing the model together.


The edges of the kisrhombille tiling can be divided into two sets of triangular tilings, seen here in red and blue. Each triangle represents a fundamental domain

The kisrhombille tiling represents the fundamental domains of p6m, [6,3] (*632 orbifold notation) symmetry. There are a number of by mirror removal and alternation. [1+,6,3] creates *333 symmetry, shown as red mirror lines. [6,3+] creates 3*3 symmetry. [6,3]+ is the rotational subgroup. The communtator subgroup is [1+,6,3+], which is 333 symmetry. A larger index 6 subgroup constructed as [6,3*], also becomes (*333), shown in blue mirror lines, and which has its own 333 rotational symmetry, index 12.

Related polyhedra and tilings

There are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling). Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Symmetry: [6,3]+
{6,3} t{6,3} r{6,3} t{3,6} {3,6} rr{6,3} tr{6,3} sr{6,3} s{3,6}
63 3.122 (3.6)2 6.6.6 36 4.6.12
Uniform duals
V63 V3.122 V(3.6)2 V63 V36 V3.4.12.4 V.4.6.12 V34.6 V36

Symmetry mutations

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram . For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedra), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

*n32 symmetry mutations of omnitruncated tilings: 4.6.2n
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i

See also


  1. ^ a b Conway, 2008, Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table
  2. ^ Chavey, D. (1989). "Tilings by Regular Polygons—II: A Catalog of Tilings". Computers & Mathematics with Applications 17: 147–165.  
  3. ^
  4. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, pattern D


  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [2]
  • Keith Critchlow, Order in Space: A design source book, 1970, p. 69-61, Pattern G, Dual p. 77-76, pattern 4
  • Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, ISBN 978-0866514613, pp. 50–56

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.