World Library  
Flag as Inappropriate
Email this Article

Twist transcription factor

Article Id: WHEBN0007330907
Reproduction Date:

Title: Twist transcription factor  
Author: World Heritage Encyclopedia
Language: English
Subject: TCF3, FOXC2, Twist, Epithelial–mesenchymal transition, List of MeSH codes (D12.776.260)
Collection: Transcription Factors
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Twist transcription factor

Twist family bHLH transcription factor 1
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols  ; ACS3; BPES2; BPES3; CRS; CRS1; CSO; SCS; TWIST; bHLHa38
External IDs GeneCards:
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Twist-related protein 1 (TWIST1) also known as class A basic helix-loop-helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene.[1][2]

Contents

  • Function 1
  • Clinical significance 2
    • As an oncogene 2.1
  • Interactions 3
  • See also 4
  • References 5
  • Further reading 6
  • External links 7

Function

Basic helix-loop-helix (bHLH) transcription factors have been implicated in cell lineage determination and differentiation. The protein encoded by this gene is a bHLH transcription factor and shares similarity with another bHLH transcription factor, Dermo1 (a.k.a. TWIST2). The strongest expression of this mRNA is in placental tissue; in adults, mesodermally derived tissues express this mRNA preferentially.[3]

Twist1 is thought to regulate osteogenic lineage.[4]

Clinical significance

Mutations in the TWIST1 gene are associated with Saethre-Chotzen syndrome,[5][6] breast cancer,[7] and Sézary Syndrome.[8]

As an oncogene

Twist plays an essential role in cancer metastasis. Over-expression of Twist or methylation of its promoter is common in metastatic carcinomas. Hence targeting Twist has a great promise as a cancer therapeutic.[9] In cooperation with N-Myc, Twist-1 acts as an oncogene in several cancers including neuroblastoma.[7][10]

Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the maintenance of cancer stem cells and the development of chemotherapy resistance.[9] Twist1 is extensively studied for its role in head- and neck cancers.[11] Here, Twist1 has been shown to be involved in evading apoptosis, making the tumour cells resistant against chemotherapeutic drugs like cisplatin.[12] Moreover, Twist1 has been shown to be expressed under conditions of hypoxia, corresponding to the observation that hypoxic cells respond less to chemotherapeutic drugs.[11]

Another process in which Twist 1 is involved is tumour metastasis. The underlying mechanism is not completely understood, but it has been implicated in the upregulation of matrix metalloproteinases[13] and inhibition of TIMP.[14]

Recently, targeting Twist has gained interest as a target for cancer therapeutics. The inactivation of Twist by small interfering RNA or chemotherapeutic approach has been demonstrated in vitro. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified.[9] For example, thymoquinone, a natural product downregulates TWIST1 transcription factor to reduce epithelial to mesenchymal transition, and thus inhibits cancer metastasis in cancer cell lines and xenograft model of breast cancer in mouse [15]

Interactions

Twist transcription factor has been shown to interact with EP300,[16] TCF3[17] and PCAF.[16]

See also

References

  1. ^ Bourgeois P, Stoetzel C, Bolcato-Bellemin AL, Mattei MG, Perrin-Schmitt F (Dec 1996). "The human H-twist gene is located at 7p21 and encodes a B-HLH protein that is 96% similar to its murine M-twist counterpart". Mammalian Genome 7 (12): 915–7.  
  2. ^ Dollfus H, Kumaramanickavel G, Biswas P, Stoetzel C, Quillet R, Denton M, Maw M, Perrin-Schmitt F (Jul 2001). "Identification of a new TWIST mutation (7p21) with variable eyelid manifestations supports locus homogeneity of BPES at 3q22". Journal of Medical Genetics 38 (7): 470–2.  
  3. ^ "Entrez Gene: TWIST1 twist homolog 1 (acrocephalosyndactyly 3; Saethre-Chotzen syndrome) (Drosophila)". 
  4. ^ Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA (Dec 1999). "TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage". Journal of Cellular Biochemistry 75 (4): 566–77.  
  5. ^ Kress W, Schropp C, Lieb G, Petersen B, Büsse-Ratzka M, Kunz J, Reinhart E, Schäfer WD, Sold J, Hoppe F, Pahnke J, Trusen A, Sörensen N, Krauss J, Collmann H (Jan 2006). "Saethre-Chotzen syndrome caused by TWIST 1 gene mutations: functional differentiation from Muenke coronal synostosis syndrome". European Journal of Human Genetics 14 (1): 39–48.  
  6. ^ Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, Garcia Delgado C, Gonzalez-Ramos M, Kline AD, Jabs EW (Jan 1997). "Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome". Nature Genetics 15 (1): 36–41.  
  7. ^ a b Martin TA, Goyal A, Watkins G, Jiang WG (Jun 2005). "Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer". Annals of Surgical Oncology 12 (6): 488–96.  
  8. ^ van Doorn R, Dijkman R, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EM, Willemze R, Tensen CP (Aug 2004). "Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis". Cancer Research 64 (16): 5578–86.  
  9. ^ a b c Khan MA, Chen HC, Zhang D, Fu J (Oct 2013). "Twist: a molecular target in cancer therapeutics". Tumour Biology 34 (5): 2497–506.  
  10. ^ Puisieux A, Valsesia-Wittmann S, Ansieau S (Jan 2006). "A twist for survival and cancer progression". British Journal of Cancer 94 (1): 13–7.  
  11. ^ a b Wu KJ, Yang MH (Dec 2011). "Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection". Bioscience Reports 31 (6): 449–55.  
  12. ^ Zhuo WL, Wang Y, Zhuo XL, Zhang YS, Chen ZT (May 2008). "Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway". Biochemical and Biophysical Research Communications 369 (4): 1098–102.  
  13. ^ Zhao XL, Sun T, Che N, Sun D, Zhao N, Dong XY, Gu Q, Yao Z, Sun BC (Mar 2011). "Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator Twist1". Journal of Cellular and Molecular Medicine 15 (3): 691–700.  
  14. ^ Okamura H, Yoshida K, Haneji T (Jul 2009). "Negative regulation of TIMP1 is mediated by transcription factor TWIST1". International Journal of Oncology 35 (1): 181–6.  
  15. ^ Khan MA, Tania M, Wei C, Mei Z, Fu S, Cheng J, Xu J, Fu J (May 2015). "Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition". Oncotarget.  
  16. ^ a b Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y, Kedes L (Feb 1999). "Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A". Cell 96 (3): 405–13.  
  17. ^ El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (Mar 2000). "Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location". Human Molecular Genetics 9 (5): 813–9.  

Further reading

  • Seto ML, Lee SJ, Sze RW, Cunningham ML (Dec 2001). "Another TWIST on Baller-Gerold syndrome". American Journal of Medical Genetics 104 (4): 323–30.  
  • Brueton LA, van Herwerden L, Chotai KA, Winter RM (Oct 1992). "The mapping of a gene for craniosynostosis: evidence for linkage of the Saethre-Chotzen syndrome to distal chromosome 7p". Journal of Medical Genetics 29 (10): 681–5.  
  • Bianchi DW, Cirillo-Silengo M, Luzzatti L, Greenstein RM (Jun 1981). "Interstitial deletion of the short arm of chromosome 7 without craniosynostosis". Clinical Genetics 19 (6): 456–61.  
  • Rose CS, King AA, Summers D, Palmer R, Yang S, Wilkie AO, Reardon W, Malcolm S, Winter RM (Aug 1994). "Localization of the genetic locus for Saethre-Chotzen syndrome to a 6 cM region of chromosome 7 using four cases with apparently balanced translocations at 7p21.2". Human Molecular Genetics 3 (8): 1405–8.  
  • Maw M, Kar B, Biswas J, Biswas P, Nancarrow D, Bridges R, Kumaramanickavel G, Denton M, Badrinath SS (Dec 1996). "Linkage of blepharophimosis syndrome in a large Indian pedigree to chromosome 7p". Human Molecular Genetics 5 (12): 2049–54.  
  • el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonaventure J (Jan 1997). "Mutations of the TWIST gene in the Saethre-Chotzen syndrome". Nature Genetics 15 (1): 42–6.  
  • Wang SM, Coljee VW, Pignolo RJ, Rotenberg MO, Cristofalo VJ, Sierra F (Mar 1997). "Cloning of the human twist gene: its expression is retained in adult mesodermally-derived tissues". Gene 187 (1): 83–92.  
  • Krebs I, Weis I, Hudler M, Rommens JM, Roth H, Scherer SW, Tsui LC, Füchtbauer EM, Grzeschik KH, Tsuji K, Kunz J (Jul 1997). "Translocation breakpoint maps 5 kb 3' from TWIST in a patient affected with Saethre-Chotzen syndrome". Human Molecular Genetics 6 (7): 1079–86.  
  • Rose CS, Patel P, Reardon W, Malcolm S, Winter RM (Aug 1997). "The TWIST gene, although not disrupted in Saethre-Chotzen patients with apparently balanced translocations of 7p21, is mutated in familial and sporadic cases". Human Molecular Genetics 6 (8): 1369–73.  
  • Hamamori Y, Wu HY, Sartorelli V, Kedes L (Nov 1997). "The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist". Molecular and Cellular Biology 17 (11): 6563–73.  
  • Gripp KW, Stolle CA, Celle L, McDonald-McGinn DM, Whitaker LA, Zackai EH (Jan 1999). "TWIST gene mutation in a patient with radial aplasia and craniosynostosis: further evidence for heterogeneity of Baller-Gerold syndrome". American Journal of Medical Genetics 82 (2): 170–6.  
  • Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y, Kedes L (Feb 1999). "Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A". Cell 96 (3): 405–13.  
  • Kunz J, Hudler M, Fritz B (Aug 1999). "Identification of a frameshift mutation in the gene TWIST in a family affected with Robinow-Sorauf syndrome". Journal of Medical Genetics 36 (8): 650–2.  
  • Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH, Hannon GJ (Sep 1999). "Twist is a potential oncogene that inhibits apoptosis". Genes & Development 13 (17): 2207–17.  
  • El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (Mar 2000). "Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location". Human Molecular Genetics 9 (5): 813–9.  
  • Lee MS, Lowe G, Flanagan S, Kuchler K, Glackin CA (Nov 2000). "Human Dermo-1 has attributes similar to twist in early bone development". Bone 27 (5): 591–602.  
  • Dollfus H, Kumaramanickavel G, Biswas P, Stoetzel C, Quillet R, Denton M, Maw M, Perrin-Schmitt F (Jul 2001). "Identification of a new TWIST mutation (7p21) with variable eyelid manifestations supports locus homogeneity of BPES at 3q22". Journal of Medical Genetics 38 (7): 470–2.  
  • Elanko N, Sibbring JS, Metcalfe KA, Clayton-Smith J, Donnai D, Temple IK, Wall SA, Wilkie AO (Dec 2001). "A survey of TWIST for mutations in craniosynostosis reveals a variable length polyglycine tract in asymptomatic individuals". Human Mutation 18 (6): 535–41.  

External links

  • GeneReviews/NCBI.NIH.UW entry on Saethre-Chotzen Syndrome
  • Twist transcription factor at the US National Library of Medicine Medical Subject Headings (MeSH)

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.